Tìm x, biết: \(\frac{2-x}{201}+\frac{x}{203}=\frac{1-x}{202}+1\)
Tìm x biết: \(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}\)
Ủa ko có vế phải thì mình làm bằng niềm tin à? :D
Tìm x, biết:
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
=> \(\left(1+\frac{x+5}{200}\right)+\left(1+\frac{x+4}{201}\right)=\left(1+\frac{x+3}{202}\right)+\left(1+\frac{x+2}{203}\right)\)
=> \(\frac{x+205}{200}+\frac{x+205}{201}=\frac{x+205}{202}+\frac{x+205}{203}\)
=> \(\frac{x+205}{200}+\frac{x+205}{201}-\frac{x+205}{202}-\frac{x+205}{203}=0\)
=> \(\left(x+205\right).\left(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\right)=0\)
Do \(\frac{1}{200}>\frac{1}{202};\frac{1}{201}>1-\frac{1}{203}\)
=> \(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\ne0\)
=> \(x+205=0\)
=> \(x=-205\)
\(\frac{x+5}{200}+\frac{x+4}{201}=\frac{x+3}{202}+\frac{x+2}{203}\)
\(=>\frac{x+5+200}{200}+\frac{x+4+201}{201}-\frac{x+3+202}{202}-\frac{x+2+203}{203}=0\)
\(=>\frac{x+205}{200}+\frac{x+205}{201}-\frac{x+205}{202}-\frac{x+205}{203}=0\)
\(=>\left(x+205\right).\left(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\right)=0\)
\(Do:\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\ne0\)
\(=>x+205=0\)
\(=>x=-205\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{200}+\frac{x+3}{201}=\frac{x+2}{202}+\frac{x+1}{203}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{15}\)
\(\frac{181\left(x+1\right)}{660}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{181\left(x+1\right)}{660}=\frac{17\left(x+1\right)}{52}\)
\(2353\left(x+1\right)=2805\left(x+1\right)\)
\(2353x+2353=2805x+2805\)
\(2353=2805x+2805-2353x\)
\(2353=452x+2805\)
\(2353-2805=452x\)
\(-452=452x\)
\(x=-1\)
Tìm x
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{202}{201}\)
Các bn giúp mk nha.Cảm ơn các bn nhìu ^3^
Bạn Kiên giải đúng nhưng chưa rõ nên mình giải lại.
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{202}{201}\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{202}{201}:2=\frac{202}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=-\frac{1}{402}=\frac{-1}{402}=\frac{1}{-402}\)
\(\Rightarrow\frac{1}{x+1}=\hept{\begin{cases}\frac{-1}{402}\\\frac{1}{-402}\end{cases}}\Rightarrow x+1=\hept{\begin{cases}402\\-402\end{cases}}\Rightarrow\hept{\begin{cases}x=402-1\\x=\left(-402\right)-1\end{cases}}\Rightarrow x=\hept{\begin{cases}401\\-403\end{cases}}\)
\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{202}{201}\)\(\Rightarrow A=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{202}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=\frac{-1}{402}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{-402}\)
\(\Rightarrow x+1=-402\)
\(\Rightarrow x=-403\)
BT1: Tìm chữ số tận cùng của \(2015^{2014}-2014^{2015}\)
BT2: Cho đa thức: \(f\left(x\right)=a\times x+b\) biết \(f\left(1\right)=1;f\left(2\right)=4\)Tìm a;b
BT3: Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Tìm c
BT4: Tìm x biết: \(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
BT5 Tính \(S=1\times2+2\times3+3\times4+4\times5+...+49\times50\)
Bạn nào giải xong trước mình kích cho nhé(nhớ giải hết bài của mình nha!)!!!
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
Sao ko ai trả lời vậy?! Bộ câu của mình khó quá ak???
Chứng tỏ rằng:
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
1/TÍNH NHANH
a/ \(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
2/so sánh
a/\(\frac{2009}{2010}va\frac{2010}{2011}\) b/\(\frac{1}{3^{400}}va\frac{1}{4^{300}}\) c/\(\frac{200}{201}+\frac{201}{202}va\frac{200+201}{201+202}\) d/\(\frac{2008}{2008+2009}va\frac{2009}{2009+2010}\)
3/TÌM X BIẾT
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
GIÚP MÌNH NHA MAI MÌNH NỘP RÙI
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
chứng tỏ rằng :
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+....+\frac{1}{400}>\frac{1}{2}\)
Các phân số \(\frac{1}{201};\frac{1}{202};...;\frac{1}{400}\) đều lớn hơn \(\frac{1}{400}\Rightarrow\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{1}{2}\) (do có 200 số hạng)
=> điều phải chứng minh
bn có thể làm cách đầy đủ hơn k Phạm Hồng Quyên
tìm x biết x+4/200 + x+3/201= x+2/202 x +1/203
Ta có : \(\frac{x+4}{200}+\frac{x+3}{201}=\frac{x+2}{202}+\frac{x+1}{203}\)
=> \(\frac{x+4}{200}+\frac{x+3}{201}-\frac{x+2}{202}-\frac{x+1}{203}=0\)
=> \(\frac{x+4}{200}+1+\frac{x+3}{201}+1-\frac{x+2}{202}-1-\frac{x+1}{203}-1=0\)
=> \(\frac{x+204}{200}+\frac{x+204}{201}-\frac{x+204}{202}-\frac{x+204}{203}=0\)
=> \(\left(x+204\right)\left(\frac{1}{200}+\frac{1}{201}-\frac{1}{202}-\frac{1}{203}\right)=0\)
=> \(x+204=0\)
=> \(x=-204\)
Vậy phương trình có tập nghiệm là S = { -204 }