Những câu hỏi liên quan
Kiều Chinh
Xem chi tiết
Đào Lê Anh Thư
21 tháng 8 2017 lúc 19:40

a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)

bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đẳng thức cô si cho 2 số dương ta có

\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đăng thức trên ta đc

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn

Bình luận (0)
Vinh Nguyễn Thành
Xem chi tiết
Nguyễn Thành Trương
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

Bình luận (2)
ank viet
Xem chi tiết
Lightning Farron
26 tháng 12 2016 lúc 17:42

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
Bùi Khắc Tuấn Khải
Xem chi tiết
Đỗ Phạm Ngọc Phước
Xem chi tiết
Thắng Nguyễn
1 tháng 3 2017 lúc 19:52

đây là BĐT Cauchy-Schwar dạng Engel cho 3 số, cách c/m tổng quát ở đây 12 cách chứng minh bất đẳng thức Bunyakovsky Cauchy Schwarz – Math2IT

Bình luận (0)
Tú Nguyễn
Xem chi tiết
tthnew
13 tháng 2 2020 lúc 18:16

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
Lalisa Manobal
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 17:00

BĐT chỉ đúng với x;y;z dương

Trước hết ta chứng minh:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+b^2xy+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Do đó:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (đpcm)

Bình luận (0)
Đặng Tuấn Anh
Xem chi tiết
Lưu Đức Mạnh
26 tháng 3 2018 lúc 23:50

Đầu tiên ta sẽ chứng minh \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\left(1\right)\)

\(\Leftrightarrow x^2b\left(a+b\right)+y^2a\left(a+b\right)\ge ab\left(x+y\right)^2\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\left(LĐ\right)\)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)

Vậy BĐT (1) đã được chứng minh

Với 6 số x,y,z,a,b,c >0 ta sẽ áp dụng BĐT (1) hai lần:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\left(đpcm\right)\)

Bình luận (0)
Nguyễn Minh Đăng
22 tháng 7 2020 lúc 9:47

Bài làm:

Áp dụng Cauchy Schwars ta có:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu "=" xảy ra khi: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
 Khách vãng lai đã xóa
ミ★Ƙαї★彡
22 tháng 7 2020 lúc 10:24

Áp dụng BĐT Svac - xơ ta có :

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu ''='' xảy ra <=> \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
 Khách vãng lai đã xóa
Giao Khánh Linh
Xem chi tiết
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:37

Áp dụng bất đẳn thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)=\)\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

          \(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)=\left(a+b+c\right)\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:37

ấy chết em quên ko có mũ 2 

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
11 tháng 11 2019 lúc 22:41

Áp dụng bất đẳng thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\)\(=\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa