Tim GTLN cua
a, A=4x-x^2+3
b,B=-x^2+6x-11
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
Tim GTLN , GTNN
a) x^2 - 6x + 11
b) - x^2 + 6x -11
( Nếu có thể xin mấy bạn chỉ mình cách làm dạng bài này )
a) = \(x^2-6x+11\)
= \(x^2-2.3x+3^2+2\)
= \(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy min = 2 khi x-3=0<=> x=3
b) = \(-\left(x^2-6x+11\right)\)
= \(-\left(x^2-2.x.3+3^2\right)-2\)
= \(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)
Vậy max=-2 khi x-3 =0 <=> x=3
Chắc chắn đúng. mik nhé! Tks banj~~~ (:
Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé! :")
A = x^2 - 6x + 11 = (x^2 - 6x + 9 ) + 2 = (x-3)^2 + 2
Vì (x-3)^2 >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2
Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
bài 1: tìm gtln của bt
a, A = 3 - 4x^2 - 4x
b, B = 1/x^2 - 6x + 11
a a= -4x^2-4x+3
để a lơn nhất thì
\(-4x^2-4x\ge0\\ \Leftrightarrow4x^2+4x\le0\\ \Leftrightarrow x^2+x\le0\\ \Leftrightarrow x\left(x+1\right)\le0\)
a lớn nhất thì x(x+1)=0 khi đó \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)thì a đạt giá trị lớn nhất là 3
a) \(A=3-4x^2-4x\)
\(A=-\left(4x^2+4x-3\right)\)
\(A=-\left[\left(2x\right)^2+2\cdot2x\cdot1+1-4\right]\)
\(A=-\left[\left(2x+1\right)^2-4\right]\)
\(A=-\left(2x+1\right)^2+4\le4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)
1) PTTNT
a) x^2 - 4x^2y + 4xy
b)x^2 + 3x + x - 3y
2) Tim GTLN
-2x^2 + 3x - 5
3) tim x,y thuoc z
3xy + 6x - y = 7
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
Bài 1:
a)x2-4x2y+4xy
=x(x-4xy+y)
b)đề sai
Bài 3:
3yx + 6x - y = 7
<=> x(3y+6) - (3y+6) = 27
<=> (3y+6)(x+1) = 27
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 | |
3y+6 | 27 | -27 | 9 | -9 | 3 | -3 | 1 | -1 | |
x | 0 | -2 | 2 | -4 | 8 | -10 | 26 | -28 | |
y | 7 | -11 | 1 | -5 | -1 | -3 | \(-\frac{5}{3}\) | \(-\frac{7}{3}\) |
Vậy...
tim gtln cua
a=-4x^2-8x+3
b=6x-x^2+2
c=x(2-3x)
d=3x-x^2+2
e=3-2x^2+2xy-y^2-2x
a) \(A=-4x^2-8x+3=-4\left(x^2+2x+1\right)+7=-4\left(x+1\right)^2+7\le7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy Max(A) = 7 khi x = -1
b) \(B=6x-x^2+2=-\left(x^2-6x+9\right)+11=-\left(x-3\right)^2+11\le11\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy Max(B) = 11 khi x = 3
c) \(C=x\left(2-3x\right)=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{1}{3}=-3\left(x-\frac{1}{3}\right)^2+\frac{1}{3}\le\frac{1}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{1}{3}\right)^2=0\Rightarrow x=\frac{1}{3}\)
Vậy Max(C) = 1/3 khi x = 1/3
d) \(D=3x-x^2+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy Max(D) = 17/4 khi x = 3/2
e) \(E=3-2x^2+2xy-y^2-2x\)
\(E=-\left(x^2-2xy+y^2\right)-\left(x^2+2x+1\right)+4\)
\(E=-\left(x-y\right)^2-\left(x+1\right)^2+4\le4\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow x=y=-1\)
Vậy Max(E) = 4 khi x = y = -1
tim gtln cua
a=-4x^2-8x+3
b=6x-x^2+2
c=x(2-3x)
d=3x-x^2+2
e=3-2x^2+2xy-y^2-2x
A = \(4x^2\) - 8x + 3
= [\(\left(2x\right)^2\) - 2.2x.2 + \(2^2\)] \(-2^2\) + 3
= \(\left(2x-2\right)^2\) - 1
Ta có: \(\left(2x-2\right)^2\) ≤ 0 ∀ x
\(\left(2x-2\right)^2\) - 1 ≤ - 1
Hay A ≤ - 1
Dấu "=" xảy ra ↔ 2x - 2 = 0
2x = 2
x = 1
Vậy GTLN của A = - 1 ↔ x = 1
B = 6x \(-x^2\) + 2
= - (\(x^2\) - 6x) + 2
= - (\(x^2\) - 2.x.3 + \(3^2\)) \(-3^2\) + 2
= - \(\left(x-3\right)^2\) -7
Ta có: \(-\left(x-3\right)^2\) ≤ 0 ∀ x
\(-\left(x-3\right)^2\) - 7 ≤ - 7
Hay B ≤ - 7
Dấu "=" xảy ra ↔ - (x - 3) = 0
- x + 3 = 0
- x= - 3
x = 3
Vậy GTLN của B = - 7 ↔ x = 3
C = x(2 - 3x)
= 2x \(-3x^2\)
= - 3(\(x^2\) - \(\frac{3}{2}x\) )
= - 3(\(x^2\) - 2.x.\(\frac{3}{4}\) + \(\frac{3}{4}^2\)) \(-\frac{3}{4}^2\)
Ta có: \(-3\left(x+\frac{3}{4}\right)^2\) ≤ 0 ∀ x
\(-3\left(x+\frac{3}{4}\right)^2\) \(-\frac{9}{16}\) ≤ \(-\frac{9}{16}\)
Hay C ≤ \(-\frac{9}{16}\)
Dấu "=" xảy ra ↔ \(-3\left(x+\frac{3}{4}\right)\) = 0
- 3x \(-\frac{9}{4}\) = 0
- 3x = \(\frac{9}{4}\)
x = \(-\frac{3}{4}\)
Vậy GTLN của C = \(-\frac{9}{16}\) ↔ x = \(-\frac{3}{4}\)