Chứng tỏ rằng đa thức P(x)=x2 -2x+2 luôn lớn hơn 0 với mọi x
#Giúp mình với nha
Cho đa thức : Q(x) = ax^2 + bx + c
a) Biết 5a + b+ 2c = 0. Chứng tỏ rằng Q(2).Q(-1) bé hơn hoặc = 0
b) Biết Q(x) = 0 với mọi x . Chứng tỏ rằng a = b = c= 0
a/
\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)
\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)
b/
Q(x) = 0 với mọi x, suy ra các điều sau:
\(\Rightarrow Q\left(0\right)=c=0\); \(Q\left(1\right)=a+b+c=a+b=0\); \(Q\left(-1\right)=a-b+c=a-b=0\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)
Vậy \(a=b=c=0\)
Chứng tỏ rằng đa thức
\(A=\left(x^2+1\right)^4+9.\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-41\)
luôn luôn không âm với mọi giá trị của x
A= x^8+4x^6+6x^4+4x^2+1+9x^6+27x^4+27x^2+9+21x^4+42x^2+21-x^2-41
=x^8+13x^6+54x^4+72x^2-10
mọi mũ đều là chẵn
đfcm :))
Đề sai nhé bạn nếu x =0 thì giá trị này nhận kq -10 đấy
Chứng tỏ rằng: 4x2+2x+1 luôn dương với mọi x
\(4x^2+2x+1\)
\(=\left[\left(2x\right)^2+2.2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Có:\left(2x+\frac{1}{2}\right)^2\ge0\)\(\text{với mọi x}\)
\(\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)\(\text{với mọi x}\)
\(\text{Vậy 4x^2}+2x+1\)\(\text{luôn dương với mọi x}\)
Cho P(x) là 1 đa thức bậc 4. Biết P(1)=P(-1), P(2)=P(-2). Chứng tỏ rằng P(X)=P(-X) với mọi x thuộc R
Giups mk với. cảm ơn mọi người
Cho đa thức P=3x^2+5
a) Tìm giá trị của đa thức P khi x= -1; x= 0; x= 3
b) Chứng tỏ rằng đã thức P luôn dương vơi mọi giá trị của x
a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)
+, \(x=0\Leftrightarrow P=3.0^2+5=5\)
+, \(x=3\Leftrightarrow P=3.3^2+5=17\)
b/ Với mọi x ta có :
\(3x^2\ge0\)
\(5>0\)
\(\Leftrightarrow3x^2+5>0\)
\(\Leftrightarrow P>0\)
\(\Leftrightarrow P\) luôn dương với mọi x
A(x) = \(x^4+2x^2+4\) . Chứng tỏ rằng A(x) > 0 với mọi x thuộc R
\(=\left(x^2+1\right)^2+3>0\forall x\in R\)
ta có :
\(x^4\ge0\)
\(^{2x^2\ge0}\)
\(\Rightarrow x^4+2x^2\ge0\)
\(\Rightarrow x^4+2x^2+4\ge4\)
hay \(x^4+2x^2+4>0\)
vậy...............
làm theo kiểu bất đẳng thức đúng rồi bị não cá vàng à mấy bạn còn tích sai
Cho phương trình x2 +( m-1)x - m = 0 (5)
a/ Chứng tỏ rằng phương trình (5) luôn có nghiệm với mọi giá trị của m ?
b/ Gọi x1 và x2 là nghiệm của phương trình (5) Chứng minh hệ thức
x1^2 +x2^2 -2.x1.x2 -x1^2.x2^2 =2m+1
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
Cho đa thức A(x)=ax2+bx+c
a) Chứng tỏ A(2).A(-1)<0 , biết 5a+b+2c=0
b) Cho A(x)=0 với mọi x . Chứng minh a=b=c=0
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
bài 1: tìm các hệ số a và b của đa thức f(x)=a+b biết rằng f(1)=1,f(2)=4
bài 2:cho đa thức f(x)=ax^2+bx+c bằng 0 với mọi giá trị của x. chứng minh rằng a=b=c=0
bài 3: cho đa thức P(x)=ax^2+bx+c trong đó các hệ số a,b,c là các số nguyên. biết rằng giá trị của đa thức chia hết cho 3 với mọi giá trị nguyên của x. chứng minh rằng a,b,c đều chia hết cho 3
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)