cho x,y \(\ge\)0 và \(x^2+y^2=1.T\text{ín}h\) GTNN của P = \(\sqrt{1+2x}+\sqrt{1+2y}\)
x,y\(\ge\)0; x2+y2=1 Tìm GTNN của :
P=\(\sqrt{1+2x}+\sqrt{1+2y}\)
Vào link này nhé ,mình tìm cả max và min luôn
https://olm.vn/hoi-dap/detail/221940896077.html
Hoặc trong câu hỏi tương tự cũng có
Cho các số thực x, y thỏa mãn \(\left(3-x\right)\sqrt{2-x}-2y\sqrt{2y-1}=0\) và \(x< 2,y>\dfrac{1}{2}\) . Tìm GTNN của biểu thức;
\(A=5-2x-2\sqrt{2y-1}+\dfrac{1}{2y-1}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x>0, y>0 thỏa mãn: \(\left(\sqrt{2x}+1\right)\left(\sqrt{2y}+1\right)\ge9\)
Tìm GTNN của P= \(\frac{x^2+1}{y}+\frac{y^2+1}{x}\)
\(2\sqrt{xy}+\sqrt{2x}+\sqrt{2y}\ge8\)
Mà \(\left\{{}\begin{matrix}2\sqrt{xy}\le x+y\\\sqrt{2x}+\sqrt{2y}\le2\sqrt{x+y}\end{matrix}\right.\)
\(\Rightarrow x+y+2\sqrt{x+y}\ge8\)
\(\Leftrightarrow\left(\sqrt{x+y}-2\right)\left(\sqrt{x+y}+4\right)\ge0\)
\(\Rightarrow x+y\ge4\)
\(P=\frac{x^2}{y}+\frac{y^2}{x}+\frac{1}{x}+\frac{1}{y}\ge x+y+\frac{4}{x+y}\)
\(P\ge\frac{x+y}{4}+\frac{4}{x+y}+\frac{3\left(x+y\right)}{4}\ge2\sqrt{\frac{4\left(x+y\right)}{4\left(x+y\right)}}+\frac{3.4}{4}=5\)
Dấu "=" xảy ra khi \(x=y=2\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho hai số x, y thỏa x+y=2. Tìm GTNN của biểu thức: P=\(\frac{1}{x+1+\sqrt{x^2+2x+2}}+\frac{1}{y+1+\sqrt{y^2+2y+2}}\)
\(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow a+b=4\)
\(P=\frac{1}{\sqrt{a^2+1}+a}+\frac{1}{\sqrt{b^2+1}+b}=\sqrt{a^2+1}-a+\sqrt{b^2+1}-b\)
\(P=\sqrt{a^2+1}+\sqrt{b^2+1}-4\)
\(P\ge\sqrt{\left(a+b\right)^2+\left(1+1\right)^2}-4=2\sqrt{5}-4\)
\(P_{min}=2\sqrt{5}-4\) khi \(a=b=2\) hay \(x=y=1\)
1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)
cho x, y >0 và \(x^2+y^2=1\)
Tính GTNN, GTLN của \(\sqrt{1+2x}+\sqrt{1+2y}\)
GTNN
\(x^2+y^2=1=\left(x+y\right)^2-2xy\Rightarrow2xy=\left(x+y\right)^2-1\)
\(x;\text{ }y\ge0\Rightarrow x+y=\sqrt{x^2+y^2+2xy}\ge\sqrt{1+2xy}\ge1\)
\(A^2=2+2\left(x+y\right)+2\sqrt{\left(1+2x\right)\left(1+2y\right)}\)
\(=2+2\left(x+y\right)+2\sqrt{1+2\left(x+y\right)+4xy}\)
\(=2+2\left(x+y\right)+2\sqrt{1+2\left(x+y\right)+2\left(x+y\right)^2-2}\)
\(=2+2t+2\sqrt{2t^2+2t-1}\text{ }\left(t=x+y\ge1\right)\)
\(\ge2+2+2\sqrt{2.1^2+2.1-1}\)
\(=4+2\sqrt{3}\)
\(\Rightarrow A\ge\sqrt{4+2\sqrt{3}}=1+\sqrt{3}\)
Dấu bằng xảy ra khi \(x+y=1\Leftrightarrow xy=0\Leftrightarrow\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)
GTLN
Với 2 số thực bất kì, ta luôn có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)-\left(a-b\right)^2\le2\left(a^2+b^2\right)\)
\(A^2\le2\left(1+2x+1+2y\right)=4+4\left(x+y\right)\le4+4\sqrt{2\left(x^2+y^2\right)}=4+4\sqrt{2}\)
\(\Rightarrow A\le\sqrt{4+4\sqrt{2}}\)
Dấu bằng xảy ra khi 2 biến bằng nhau.
cho x,y,z>0 và x+y+z=1.C/m R
\(\sqrt{2x^2+xy+2z^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)\(\ge\sqrt{5}\)
5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2
=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)= \(\frac{\sqrt{5}\left(x+y\right)}{2}\)
Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3