\(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow a+b=4\)
\(P=\frac{1}{\sqrt{a^2+1}+a}+\frac{1}{\sqrt{b^2+1}+b}=\sqrt{a^2+1}-a+\sqrt{b^2+1}-b\)
\(P=\sqrt{a^2+1}+\sqrt{b^2+1}-4\)
\(P\ge\sqrt{\left(a+b\right)^2+\left(1+1\right)^2}-4=2\sqrt{5}-4\)
\(P_{min}=2\sqrt{5}-4\) khi \(a=b=2\) hay \(x=y=1\)