Lam phep chia
a, (3x^2-6x):(2-x)
b, (x^3+2x^2-2x-1):(x^2+3x+1)
làm tính chia
a, (2x^4 + x^3 - 3x^2 + 5x -2) : (x^2 - x +1)
b, ( 6x^2 + 13x - 5) : ( 2x +5)
c, (2x^4 + x^3 - 5x^2 - 3x - 3) : (x^2 - 3)
\(a,=\left(2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x-2\right):\left(x^2-x+1\right)\\ =\left(x^2-x+1\right)\left(2x^2+3x-2\right):\left(x^2-x+1\right)\\ =2x^2+3x-2\\ b,=\left(6x^2+15x-2x-5\right):\left(2x+5\right)\\ =\left(2x+5\right)\left(3x-1\right):\left(2x+5\right)=3x-1\\ c,=\left(2x^4-6x^2+x^3-3x+x^2-3\right):\left(x^2-3\right)\\ =\left(x^2-3\right)\left(2x^2+x+1\right):\left(x^2-3\right)=2x^2+x+1\)
lam phep chia:
a) x^3-x^2-7x+3 cho x-3
b) (2x^4-3x^3-3x^2-2+6x) cho (x^2-2)
Lam phep chia
a, 3x^3y^2:x^2
b, (x^5+4x^3-6x^2):4x^2
c, (x^3-8):(x^2+2x^2+4)
a)=3xy2
b) x5+4x3-6x2 : 4x2
x5 : \(\overline{\frac{1}{4}x^3+x-1}\)
4x3-6x2 :
4x3 :
-6x2 :
-6x2 :
0
câu 1 |: phan tich da thuc thanh nhan tử x^3 +3x^2-3x-1
\câu 2 làm tính chia
a,( x^4 -2x^3 +2x-1 ) : (x^2-1)
\b, (x^6 -2x^5+2x^4+6x^3-4x^2) : (6x^2)
\cau3 rút gọn phân thức \(\frac{3x^2+6x^2+12}{x^3-8}\)
\mọi người làm gấp với a! lam dc cau nào nhờ giai hộ
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
Bài 1: Rút gọn các biểu thức sau:
a, A = (x-2).(2x-1) - 2x (x+3)
b, B = (3x-2).(2x+1) - (6x-1).(x+2)
c, C = 6x.(2x+3) - (4x-1).(3x-2)
d, D = (2x+3).(5x-2)+(x+4).(2x-1) - 6x.(2x-3)
Bài 2: Chứng tỏ rằng các đa thức không phụ thuộc vào biến.
a, 2x(3x-5).(x+11) - 3x.(2x+3).(x+7)
b, (x2+5x-6).(x-1) - (x+2).(x2-x+1) - x(3x-10)
c, (x2+x+1).(x-1) - x2(x+1) + x2 - 5
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
Bài 2:
a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)
\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)
\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)
\(=-117x\)
b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)
\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)
\(=x^3+x^2-x+6-x^3-x^2+x-2\)
=4
c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)
\(=x^3-1-x^3-x^2+x^2-5\)
=-6
Tinh x
a)3.(2x-1)-x.(3x-2)=3x.(1-x)+2
b)2x3.(2x-3)-x2.(4x2-6x+2)=0
thuc hien phep nhan
(x2+x+1).(x3-x2+1)
giup minh nha thu bay minh nop cho thay roi cam on
a) \(3\left(2x-1\right)-x\left(3x-2\right)=3x\left(1-x\right)+2\)
\(6x-3-3x^2+2x=3x-3x^2+2\)
\(6x-3x^2+2x-3x+3x^2=2+3\)
\(5x=5\)
\(x=1\)
b) \(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^2-2x^2=0\)
\(-2x^2=0\)
\(x^2=0\)
\(x=0\)
\(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^5+x+1\)
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
4x(5x − 2) 7x Ä 3x 2 − 6x + 2ä b) c) 2x(3x + 2) + (4x + 3)(2x − 1) 3x 3 y 2 : x 2 d) Ä x 3 + 4x 3 − 6x 2 ä : 4x 2 e) Ä 3x 2 − 6x ä f) : (2 − x) Ä 6x 2 + 13x − 5 ä g) : (2x + 5) Ä x 3 − 3x 2 + x − 3 ä h) : (x − 3)