Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2021 lúc 10:33

a) Ta có: \(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)

Xét ΔABD và ΔACE có

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(g-c-g)

Suy ra: AD=AE(Hai cạnh tương ứng)

b) Xét ΔADE có AE=AD(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy của ΔADE cân tại A)(1)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy của ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)

mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: \(\widehat{DBC}=\widehat{ECB}\)(cmt)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

d) Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{ODE}\)(hai góc so le trong, ED//BC)

và \(\widehat{OCB}=\widehat{OED}\)(hai góc so le trong, ED//BC)

nên \(\widehat{OED}=\widehat{ODE}\)

Xét ΔODE có \(\widehat{OED}=\widehat{ODE}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

Lê Phương Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 19:33

a) Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)

Xét ΔABC có 

CE là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

Xét ΔABC có

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)

nên ED//BC(Định lí Ta lét đảo)

Xét tứ giác BEDC có ED//BC(cmt)

nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)

mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)

nên \(\widehat{EDB}=\widehat{EBD}\)

Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)

nên ΔEBD cân tại E(Định nghĩa tam giác cân)

hay ED=EB(đpcm)

Nguyễn quốc thắng
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
6 tháng 9 2021 lúc 20:21

Tham Khảo

Nguyễn Hoài Đức CTVVIP
6 tháng 9 2021 lúc 20:21

Tk

Con Gà Gánk Team
Xem chi tiết
Alice
4 tháng 8 2023 lúc 9:43

\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)

\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\)  \(\dfrac{\text{ACB}}{\text{2}}\)

Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)

\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)

Nên \(\text{ABD = CBD = ACE = BCE}\)

Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có 

\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)

\(\text{BC}\) chung

\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)

\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)

\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)

Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)

\(\text{⇒}\) \(\text{AE = AD}\)

\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)

\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\)  \(\text{- 2.ABC (1)}\)

\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)

Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)

Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)

Hồ Thị Hồng Nhung
Xem chi tiết
Ngoc An Pham
Xem chi tiết
❊ Linh ♁ Cute ღ
16 tháng 9 2018 lúc 22:21

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

nguyen thuy linh
Xem chi tiết
❊ Linh ♁ Cute ღ
16 tháng 9 2018 lúc 22:19

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

tham khảo á

Ashshin HTN
16 tháng 9 2018 lúc 22:20

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

trần bá thuận
6 tháng 2 2020 lúc 9:08

giỏi đấy

Khách vãng lai đã xóa
Thực Sự Chán
Xem chi tiết
Ngố ngây ngô
10 tháng 1 2021 lúc 14:08

Cái hình mình vẽ tương đôi thôi, bạn cứ coi như là nó đều đi ha :))))

undefined

Ngoc An Pham
Xem chi tiết
soyeon_Tiểubàng giải
23 tháng 12 2016 lúc 20:51

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`

caikeo
30 tháng 12 2017 lúc 21:10

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`