Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Con Gà Gánk Team

Tam giác ABC cân tại A,AB=AC. Tia phân giác góc B và C cắt AC và Ab lần lượt tại D và E. Chứng Minh:

a, Tam giác AED cân đỉnh A.

b,DE song song BC

c,BE=ED=DC

Alice
4 tháng 8 2023 lúc 9:43

\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)

\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\)  \(\dfrac{\text{ACB}}{\text{2}}\)

Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)

\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)

Nên \(\text{ABD = CBD = ACE = BCE}\)

Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có 

\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)

\(\text{BC}\) chung

\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)

\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)

\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)

Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)

\(\text{⇒}\) \(\text{AE = AD}\)

\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)

\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\)  \(\text{- 2.ABC (1)}\)

\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)

Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)

Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)


Các câu hỏi tương tự
manh
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Vũ Hạnh
Xem chi tiết
Nguyễn Quang Huy
Xem chi tiết
Trần Gà Roblox Gdrt
Xem chi tiết
Xem chi tiết
Pham Trong Bach
Xem chi tiết