Giải pt với m là tham số:
m(mx-2)=x(3m+4)+2
Cho PT ẩn x( m là tham số): \(\frac{m+3}{x+1}-\frac{5-3m}{x-2}=\frac{mx+3}{x^2-x-2}\)(1)
a)Giải PT(1) khi m=1.
b)Tìm tất cả các giá trị của tham số m để PT(1) vô nghiệm.
giải pt với m là tham số
a. x 2 - x + m = 0
b. ( m - 1 )x 2 + x -1 = 0
c. 2x 2 - mx + 2 = 0
Cho pt bậc 2 x^2+5x+3m=0 (m là tham số) A) thay m=0 rồi giải pt đã cho B) tìm m để pt x^2+5x+3m=0 có 2 nghiệm phân biệt
a) Với m=0
=> pt <=> \(x^2+5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(x^2+5x+3m=0\)
\(\Delta=25-12m\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow25-12m>0\)
\(\Leftrightarrow m< \dfrac{25}{12}\)
Giair và biện luận các bất PT sau theo tham số m:
1) x + 3m > 3 + mx
2) \(25m^2-2x< m^2x-25\)
3) \(3x-m^2\ge mx-4m+3\)
4) \(m\left(x-m\right)\ge3x-9\)
1. \(x+3m>3+mx.\Leftrightarrow x+3m-3-mx>0.\\ \Leftrightarrow\left(1-m\right)x+3m-3>0.\\ \Leftrightarrow\left(1-m\right)x>-3m+3.\left(1\right)\)
+) Nếu \(1-m=0.\Leftrightarrow m=1.\) Thay vào (1):
\(0x>-3.1+3.\Leftrightarrow0x>0\) (vô lý).
\(\Rightarrow\) Bất phương trình vô nghiệm.
+) Nếu \(1-m>0.\Leftrightarrow m< 1.\)
Khi đó (1) có nghiệm: \(x>\dfrac{-3m+3}{1-m}.\Leftrightarrow x>\dfrac{-3\left(m-1\right)}{-\left(m-1\right)}.\Leftrightarrow x>3.\)
+) Nếu \(1-m< 0.\Leftrightarrow m>1.\)
Khi đó (1) có nghiệm: \(x< \dfrac{-3m+3}{1-m}.\Leftrightarrow x< 3.\)
1/ x=3 , m=1
bl : tìm nghiệm , tạo khoảng thử nghiệm
2/ \(m=\pm\sqrt{-\dfrac{25-2x}{25-x}}\)
\(x=\dfrac{25\left(1+m^2\right)}{2+m^2}\)
3/ x=-m+1
m = \(\left\{{}\begin{matrix}3\\-x+1\end{matrix}\right.\)
4/ m= \(\left\{{}\begin{matrix}x-3\\3\end{matrix}\right.\)
x= m+3
Cho pt : x^2 - 2(m-1)x + m^2 - 3m + 4 = 0 (m là tham số) . a. Giải phương trình khi m = 2 . b, Tìm m để phương trình có 2 nghiệm phân biệt
a: Thay m=2 vào pt, ta được:
\(x^2-2x+2=0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)
=>4m>12
hay m>3
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
cho pt: \(x^2-\left(m-2\right)x-m^2+3m-4=0\) (m là tham số)
chứng minh rằng phương trình có 2 nghiệm phân biệt với mọi m
Ta có: \(a.c=1.\left(-m^2+3m-4\right)< 0\)
Do a và c trái dấu
⇒ Phương trình có 2 nghiệm phân biệt với mọi m
cho PT ẩn x (m là tham số): (m+3)/(x+1) - (5- 3m)/(x- 2) = (mx +3)/(x2- x- 2)
tìm tất cả các giá trị của tham số m để phương trình này vô nghiệm
p/s tra loi nhanh giup minh, ai nhanh nhat minh tick cho