Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cỏ dại
Xem chi tiết
Lê Anh Tú
16 tháng 12 2017 lúc 22:03

\(A=3,7+\left|4,3-x\right|\)

\(\Rightarrow3,7+\left|4,3-x\right|\ge3,7;P\ge3,7\)

Vậy \(GTNN\left(P\right)=3,7\)nếu \(\left|4,3-x\right|=0\)

                                                  \(4,3-x=0\)

                                                  \(x=4,3\)

<=> x=4,3

Đỗ Gia Nhi
Xem chi tiết
Đỗ Gia Nhi
27 tháng 12 2022 lúc 22:52

mn ơi giúp mik với, mik cần gấp á, cảm ơn mn nhìuuu 

Cỏ dại
Xem chi tiết
Nguyễn An
16 tháng 12 2017 lúc 22:35

GTLN =  5

Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Huy Tú
15 tháng 7 2021 lúc 20:17

a, Ta có : \(A=4-\left|2x+5\right|\le4\)

Dấu ''='' xảy ra khi x = -5/2 

Vậy GTLN A là 4 khi x = -5/2 

b, Ta có : \(\left|x-1\right|+5\ge5\)

\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)

Dấu ''='' xảy ra khi x = 1 

Vậy GTLN B là 1/5 khi x = 1

c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)

Dấu ''='' xảy ra khi x = 2 ; y = -2 

Vậy GTLN C là 4 khi x = 2 ; y = -2

Trên con đường thành côn...
15 tháng 7 2021 lúc 20:17

undefined

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:40

a) Ta có: \(\left|2x+5\right|\ge0\forall x\)

\(\Leftrightarrow4-\left|2x+5\right|\le4\forall x\)

Dấu '=' xảy ra khi \(=-\dfrac{5}{2}\)

b) Ta có: \(\left|x-1\right|+5\ge5\forall x\)

\(\Leftrightarrow\dfrac{2019}{\left|x-1\right|+5}\le\dfrac{2019}{5}\forall x\)

Dấu '=' xảy ra khi x=1

c) Ta có: \(-\left|x-2\right|\le0\forall x\)

\(-\left|3y+6\right|\le0\forall y\)

Do đó: \(-\left|x-2\right|-\left|3y+6\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=-2

Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 9:56

a: \(\left(x-2\right)^2>=0\)

\(\left|y-x\right|>=0\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

=>A>=3 với mọi x,y

Dấu = xảy ra khi x-2=0 và y-x=0

=>x=2=y

b: \(\left|x+5\right|>=0\)

=>\(\left|x+5\right|+5>=5\)

=>B>=5 với mọi x

Dấu = xảy ra khi x+5=0

=>x=-5

c: \(\left|x-2010\right|>=0\)

=>\(-\left|x-2010\right|< =0\)

=>\(-\left|x-2010\right|+2012< =2012\)

=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)

Dấu = xảy ra khi x=2010

HT.Phong (9A5)
28 tháng 10 2023 lúc 9:57

a) Ta có:

\(A=\left(x-2\right)^2+\left|y-x\right|+3\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

\(\Rightarrow x=y=2\)

Vậy: \(A_{min}=3\Leftrightarrow x=y=2\) 

b) Ta có:

\(B=\left|x+5\right|+5\)

Mà: \(\left|x+5\right|\ge0\)

\(\Rightarrow B=\left|x+5\right|+5\ge5\)

Dấu "=" xảy ra:

\(x+5=0\Rightarrow x=-5\)

Vậy: \(B_{min}=5\Leftrightarrow x=-5\)

c) Ta có:

\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)

Mà: \(\left|x-2010\right|\ge0\)

\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)

Dấu "=" xảy ra khi:

\(x-2010=0\Rightarrow x=2010\)

Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)

Nguyễn Hảo Hảo
27 tháng 10 lúc 8:56

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

Trần Ly
Xem chi tiết
Lê Nguyệt Hằng
14 tháng 7 2015 lúc 20:49

De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7

De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546

Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Nguyễn Nhật Minh
Xem chi tiết
_Guiltykamikk_
20 tháng 4 2018 lúc 12:30

\(A=\frac{x}{\left(x+4\right)^2}\)

Đặt  \(x+4=y\Leftrightarrow x=y-4\)       \(\left(y\ne0\right)\)

\(A=\frac{y-4}{y^2}\)

\(A=\frac{y}{y^2}-\frac{4}{y^2}\)

\(-A=\left(\frac{2}{y}\right)^2-\frac{1}{y}\)

\(-A=\left[\left(\frac{2}{y}\right)^2-\frac{1}{y}+\left(\frac{1}{4}\right)^2\right]-\frac{1}{16}\)

\(-A=\left(\frac{2}{y}-\frac{1}{4}\right)^2-\frac{1}{16}\)

Do : \(\left(\frac{2}{y}-\frac{1}{4}\right)^2\ge0\forall y\in R\)

\(\Rightarrow-A\ge-\frac{1}{16}\)

\(\Leftrightarrow A\le\frac{1}{16}\)

Dấu " = " xảy ra khi :

\(\frac{2}{y}-\frac{1}{4}=0\)

\(\Leftrightarrow\frac{2}{y}=\frac{1}{4}\)

\(\Leftrightarrow y=8\)

Lại có : \(x=y-4\Rightarrow x=4\)

Vậy \(A_{Max}=\frac{1}{16}\Leftrightarrow x=4\)