A=5+5^2+5^3+...+5^2024 tìm x để 4.A+5=5^x
Tìm x sao cho
a) ( x - 2024)2023 =1. b) (2 . x - 1)5 =32
c) 5<2x < 100
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
tìm giá trị của x để các biểu thức sau có giá trị dương:
a) (-2+2/5x +1 ) (x-2024)
b) x-2/x+5
a, F(\(x\)) = (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024)
-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);
\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024
Lập bảng xét dấu ta có:
| \(x\) | \(\dfrac{5}{2}\) 2024 |
| \(x\) - 2024 | - - 0 + |
| - 2 + \(\dfrac{2}{5}\)\(x\) + 1 | - 0 + + |
| F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)
b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5 = 0 ⇒ \(x\) = -5
Lập bảng xét dấu ta có:
| \(x\) | -5 2 |
| \(x-2\) | - - 0 + |
| \(x+5\) | - 0 + 0 + |
| F(\(x\)) | + 0 - 0 + |
Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)
cho a =1/3 - 2/3*2 + 3/3*3 - 4/3*4 + 5/3*5 - ...... + 2023/3*2023 - 2024/3*2024 hãy so sánh a với 20/3
Sửa đề: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
Ta có: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(3a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}\)
=>\(3a+a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)
Đặt \(b=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)
=>\(3b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}\)
=>\(3b+b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)
=>\(4b=-1-\frac{1}{3^{2023}}=\frac{-3^{2023}-1}{3^{2023}}\)
=>\(b=\frac{-3^{2023}-1}{4\cdot3^{2023}}\)
Ta có: \(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(4a=1+\frac{-3^{2023}-1}{4\cdot3^{2023}}-\frac{2024}{3^{2024}}=1+\frac{-3^{2024}-3}{4\cdot3^{2024}}-\frac{8096}{4\cdot3^{2024}}\)
=>\(4a=1-\frac{3^{2024}+8099}{4\cdot3^{2024}}=1-\frac14-\frac{8099}{4\cdot3^{2024}}=\frac34-\frac{8099}{4\cdot3^{2024}}\)
=>\(4a<\frac34\)
=>\(a<\frac{3}{16}\)
mà \(\frac{3}{16}<1<\frac{20}{3}\)
nên \(a<\frac{20}{3}\)
Bài 1: cho A= x^2+4x+4/x^2-4
a) tìm x để A=5/3
b) tìm x để A nguyên
Bài 2: cho x+1/x=3, tính:
a) x^2+1/x^2
b) x^5+1/x^5
a )\(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{x^2-2^2}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}=\frac{5}{3}\)
<=> (x + 2).3 = (x - 2).5
<=> 3x + 6 = 5x - 10
<=> 3x - 5x = - 10 - 6
<=> - 2x = - 16
=> x = 8
b ) \(\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
đến đây tự tìm đc
Bài 2 lớp 8 ko làm đc thì đi chết đi
Tìm nghiệm của đa thức;
A(x)=||x+2|+5|-2024
x . x^2 . x^3 . x^4 . x^5..........x^49 . x^50 = 2024^1275
x.x².x³.x⁴.x⁵...x⁴⁹.x⁵⁰ = 2024¹²⁷⁵
x¹⁺²⁺³⁺⁴⁺⁵⁺···⁺⁴⁹⁺⁵⁰ = 2024¹²⁷⁵
x²⁵·⁵¹ = 2024¹²⁷⁵
x¹²⁷⁵ = 2024¹²⁷⁵
x = 2024
\(x^{\left(1+2+3+4+5+...+49+50\right)}=2024^{1275}\)
Ta tính tồng trong ngoặc
Số số hạng tổng trên là: ( 50 -1) + 1 = 50 số
Tổng trên bằng: ( 1 + 50 ) x 50 : 2 = 1275
=> \(x^{1275}=2024^{1275}\)
\(\Rightarrow x=2024\)
tìm x biết
a) (5x-1)(2x-1/3)=0
b) (x^2+1)(x-4)=0
c) 2x^2 -1/3x=0
d) (4/5)^5.x=(4/5)^7
e)Tìm x thuộc z để A=x+5/x-2 có giá trị nguyên
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
| x - 2 | 1 | -1 | 7 | -7 |
| x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Cho A=3x+|5-x|-1/2+|x-4|
a) Rút gọn A
b)tìm x để A=2
c)tìm x để A<3
d)tìm x để a<5
Cho A=\(5\)+\(5^2\)+\(5^3\)+...+\(5^{2022}\) .Tìm x để 4A+5=\(5^x\)
\(A=5+5^2+5^3+...+5^{2022}\)
\(5A=5^2+5^3+5^4+...+5^{2023}\)
\(5A-A=5^{2023}-5\)
\(4A+5=5^{2023}-5+5\)
\(4A+5=5^{2023}\)
Vì \(4A+5=5^x\)
\(=>5^x=5^{2023}\)
\(=>x=2023\)
\(#PaooNqoccc\)
Cho A=5+5^2+5^3+...+5^2020 Tìm x để 4A+5=5^x
A = 5 + 5² + 5³ + ... + 5²⁰²⁰
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²¹
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²¹) - (5 + 5² + 5³ + ... + 5²⁰²⁰)
= 5²⁰²¹ - 5
⇒ 4A + 5 = 5²⁰²¹ - 5 + 5
= 5²⁰²¹
Mà 4A + 5 = 5ˣ
5ˣ = 5²⁰²¹
x = 2021
A=5+5^2+5^3+...+ 5^2020
5A= 5^2 +5^3+...+5^2021
5A-A= _ 5^2+5^3+...+5^2021
5+5^2+5^3+...+5^2020
____________________
4A= 5^2021 - 5
Vậy 4A+5=5^x
5^2021-5+5=5^x
5^2021-5 = 5^x - 5
Chiệt tiêu - 5 ở hai bên đi ta còn:
5^2021=5^x
=> x=2021