a)E=a-căn a -2 =2
b)tính giá trị nhỏ nhất của E
Tìm giá trị nhỏ nhất của a và b để biểu thức C=a^2-4ab+5b^2-2b-6 có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó.
C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7
dấu = xảy ra khi a-2b=0
b-1=0
<=>a=2;b=1
..................................
A) Thu gọn E=
.
-0
y+
2![]()
B) Tính giá trị của S tại X=2,y=
,z=-1
E =5-X\X-2.tim cac gia trị nguyên của x tại
a)E có giá trị nguyên
b)E có giá trị nhỏ nhất
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
tính giá trị lớn nhất và giá trị nhỏ nhất của các biểu thức sau:
a) A= 1-8x-x^2
b) B= 5-2x+x^2
c) C= x^2+4y^2-6x+8y-2021
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Bài 3 : Cho tam giác ABC vuông tại A có AB = AC = a . Điểm M chuyển động trên
cạnh BC , gọi D và E thứ tự là hình chiếu của M trên AB và AC .
a)Tìm vị trí của M để S ADME đạt giá trị lớn nhất tính giá trị lớn nhất đó theo a .
b) Tìm vị trí của M để DE đạt giá trị nhỏ nhất tính giá trị nhỏ nhất đó theo a .
a-b=1. tìm giá trị nhỏ nhất của A = 2a^2 + 2b^2
\(A=2\left(a^2+b^2\right)=2\left[\left(b+1\right)^2+b^2\right]=2\left(2b^2+2b+1\right)=4\left[b^2+b+\dfrac{1}{4}\right]+1=4\left(b+\dfrac{1}{2}\right)^2+1\ge1\)
" = " \(\Leftrightarrow b=-\dfrac{1}{2};a=\dfrac{1}{2}\)
cho A= (1/1- căn x + 1/1 + căn x) : (1/1- căn x -1/ 1+ căn x) + 1/1- căn x
a) tìm dkxd và rút gọn A
b. tính giá trị của A khi x= 7+ 4 căn 3
c. với giá trị nào của x thì A đạt giá trị nhỏ nhất
a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)
\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)
b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)
\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)
Cho A=(a+b)-(c+d+e), trong đó a, b, c, d và e là các số nguyên khác nhau từ 1 đến 2020. Tìm giá trị lớn nhất và giá trị nhỏ nhất của A.