Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng văn tiến
Xem chi tiết

a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)

=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)

=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)

=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)

=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)

\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)

\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)

=1-1+1

=1

b: \(x^2+2xy+6x+6y+2y^2+8=0\)

=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)

=>\(\left(x+y+3\right)^2-1=-y^2\)

=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)

=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)

=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)

\(-y^2\le0\forall y\)

nên (A-2022)(A-2020)<=0

=>2020<=A<=2022

\(A_{\min}=2020\) khi x+y+2=0 và y=0

=>y=0 và x=-2-y=-2-0=-2

\(A\max=2022\) khi x+y+4=0 và y=0

=>y=0 và x=-y-4=-4

Hoàng văn tiến
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Akai Haruma
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Vũ Anh Khôi
1 tháng 11 2024 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Nguyễn Anh Thư
Xem chi tiết
Xiuu
Xem chi tiết
Đào Tùng Dương
1 tháng 12 2021 lúc 21:25

A

An Phú 8C Lưu
1 tháng 12 2021 lúc 21:28
Đào Tùng Dương
1 tháng 12 2021 lúc 21:30

Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0 

Lâm Lê Tùng
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 12 2021 lúc 21:41

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Nguyễn Thị Mỹ Hiên
Xem chi tiết

A = (x+5)2022 + | y - 2021| + 2022

vì ( x+5)2022 \(\ge\) 0; 

    |y-2021|   \(\ge\) 0

    2022      = 2022

Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022

Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)

Nguyễn Minh Dương
Xem chi tiết
Nguyễn Đức Trí
10 tháng 8 2023 lúc 14:25

\(a=2022.\left|x^2+1\right|+2023\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)

mà \(\left(x^2+1\right)\ge1,\forall x\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)

\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)

Đào Trí Bình
10 tháng 8 2023 lúc 14:39

GTNN(a) = 4045 khi x = 0

Nguyễn Minh Khang
Xem chi tiết

Đặt A=|x-2022|+|x-2023|+|x-2024|

TH1: x<2022

=>x-2022<0; x-2023<0; x-2024<0

=>A=-x+2022-x+2023-x+2024=-3x+6069

Vì hàm số A=-3x+6069 là hàm số nghịch biến trên R

nên A nhỏ nhất khi x lớn nhất

Khi x<2022 thì x không có giá trị lớn nhất

=>A không có giá trị nhỏ nhất(1)

TH2: 2022<=x<2023

=>x-2022>=0; x-2023<0; x-2024<0

=>A=x-2022+2023-x+2024-x=-x+2025

Vì hàm số A=-x+2025 là hàm số nghịch biến trên R

nên A nhỏ nhất khi x lớn nhất

Khi 2022<=x<2023 thì x không có giá trị lớn nhất

=>A không có giá trị nhỏ nhất(2)

TH3: 2023<=x<2024

=>x-2022>0; x-2023>=0; x-2024<0

=>A=x-2022+x-2023+2024-x=x-2021

Vì hàm số A=x-2021 là hàm số đồng biến trên R

nên A nhỏ nhất khi x nhỏ nhất

Khi 2023<=x<2024 thì \(x_{\min}=2023\)

=>A min=2023-2021=2(3)

TH4: x>=2024

=>x-2022>0; x-2023>0; x-2024>=0

=>A=x-2022+x-2023+x-2024=3x-6069

Vì hàm số A=3x-6069 là hàm số đồng biến trên R

nên A nhỏ nhất khi x nhỏ nhất

Khi x>=2024 thì \(x_{\min}=2024\)

=>\(A_{\min}=3\cdot2024-6069=6072-6069=3\) (4)

Từ (1),(2),(3),(4) suy ra \(A_{\min}=3\) khi x=2023

Ta có: \(P=\frac{|x-2022|+|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)

\(=1+\frac{2022}{|x-2022|+|x-2023|+|x-2024|}=1+\frac{2022}{A}\)

\(A\ge3\forall x\)

=>\(\frac{2022}{A}\le\frac{2022}{3}=674\forall x\)

=>\(1+\frac{2022}{A}\le1+674=675\forall x\)

=>P<=675∀x

Dấu '=' xảy ra khi x=2023