Tìm giá trị nhỏ nhất của biểu thức: A=\(_{\frac{2024}{4 - 2022 x - 1}}\)
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)
=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)
=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)
=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)
=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)
\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)
\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)
=1-1+1
=1
b: \(x^2+2xy+6x+6y+2y^2+8=0\)
=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)
=>\(\left(x+y+3\right)^2-1=-y^2\)
=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)
=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)
=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)
mà \(-y^2\le0\forall y\)
nên (A-2022)(A-2020)<=0
=>2020<=A<=2022
\(A_{\min}=2020\) khi x+y+2=0 và y=0
=>y=0 và x=-2-y=-2-0=-2
\(A\max=2022\) khi x+y+4=0 và y=0
=>y=0 và x=-y-4=-4
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
Ko thèm tick cho người ta mà đòi hỏi câu khác ✅
tìm giá trị lớn nhất của biểu thức A=|2020-x|+|2022-x|+|2024-x|
Câu 6. Giá trị nhỏ nhất của biểu thức A = (x – y)2 + (x – 1)2 + (y + 2)2 + 2021 là
A. 2021 B. 2022 C. 2023 D. 2024
Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0
Bài 1: a)Tìm giá trị lớn nhất của biểu thức:
M = 2022 - |x - 9|
b)Tìm giá trị nhỏ nhất của biểu thức:
N = |x - 2021| - (- 2022)
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Cho biểu thức A=(x+5)^2022+|y-2021|+2022.Tìm giá trị nhỏ nhất của A.
A = (x+5)2022 + | y - 2021| + 2022
vì ( x+5)2022 \(\ge\) 0;
|y-2021| \(\ge\) 0
2022 = 2022
Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022
Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức :\(a=2022.\left|x^2+1\right|+2023\)
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Đặt A=|x-2022|+|x-2023|+|x-2024|
TH1: x<2022
=>x-2022<0; x-2023<0; x-2024<0
=>A=-x+2022-x+2023-x+2024=-3x+6069
Vì hàm số A=-3x+6069 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<2022 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(1)
TH2: 2022<=x<2023
=>x-2022>=0; x-2023<0; x-2024<0
=>A=x-2022+2023-x+2024-x=-x+2025
Vì hàm số A=-x+2025 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi 2022<=x<2023 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(2)
TH3: 2023<=x<2024
=>x-2022>0; x-2023>=0; x-2024<0
=>A=x-2022+x-2023+2024-x=x-2021
Vì hàm số A=x-2021 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi 2023<=x<2024 thì \(x_{\min}=2023\)
=>A min=2023-2021=2(3)
TH4: x>=2024
=>x-2022>0; x-2023>0; x-2024>=0
=>A=x-2022+x-2023+x-2024=3x-6069
Vì hàm số A=3x-6069 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=2024 thì \(x_{\min}=2024\)
=>\(A_{\min}=3\cdot2024-6069=6072-6069=3\) (4)
Từ (1),(2),(3),(4) suy ra \(A_{\min}=3\) khi x=2023
Ta có: \(P=\frac{|x-2022|+|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(=1+\frac{2022}{|x-2022|+|x-2023|+|x-2024|}=1+\frac{2022}{A}\)
\(A\ge3\forall x\)
=>\(\frac{2022}{A}\le\frac{2022}{3}=674\forall x\)
=>\(1+\frac{2022}{A}\le1+674=675\forall x\)
=>P<=675∀x
Dấu '=' xảy ra khi x=2023