Những câu hỏi liên quan
Châu Trần
Xem chi tiết
Lầy Văn Lội
15 tháng 6 2017 lúc 21:40

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

Bình luận (0)
Thắng Nguyễn
15 tháng 6 2017 lúc 21:42

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

Bình luận (0)
Lầy Văn Lội
15 tháng 6 2017 lúc 21:46

vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)

\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều 

Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)

Bình luận (0)
Winkies
Xem chi tiết
KWS
28 tháng 1 2019 lúc 17:28

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

Bình luận (0)
Tran Le Khanh Linh
16 tháng 5 2020 lúc 20:54

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
fairy
Xem chi tiết
Vũ Quý Đạt
9 tháng 6 2017 lúc 14:33

Vì \(0\le x,y,z\le1\)

\(\Rightarrow xy\le y\)

\(x^2\le1\)

\(\Rightarrow x^2+xy+xz\le xz+y+1\)

\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)

\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)

CMTT : các vế khác cug vậy

cộng các vế vào là đc

Bình luận (0)
Nguyễn Khánh Huyền
20 tháng 1 2018 lúc 21:42

\(0\le x;y;z\le1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))

\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))

\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))

\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)

Bình luận (0)
FL.Hermit
27 tháng 9 2020 lúc 11:32

Đề chuyên Sư Phạm năm 2020 nè !!!!!!!

Bình luận (0)
 Khách vãng lai đã xóa
Pham Quoc Cuong
Xem chi tiết
Chàng trai bóng đêm
15 tháng 5 2018 lúc 14:05

Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)

\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\) 

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\) 

Tương tự rồi cộng từng vế, ta có:  

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\) 

=> ĐPCM 

Bình luận (0)
huynh van duong
Xem chi tiết
Nguyễn Thị Thùy Linh
24 tháng 5 2020 lúc 9:56

đây đâu phải toán lớp 1

Bình luận (0)
 Khách vãng lai đã xóa
LÊ NGỌC BẢO
24 tháng 5 2020 lúc 22:34

cũng ko phải bài toán lớp 2

Bình luận (0)
 Khách vãng lai đã xóa
CẦM XUÂN THÀNH
25 tháng 5 2020 lúc 20:28

cái này toán lớp 5 r

Bình luận (0)
 Khách vãng lai đã xóa
Lee Thuu Hà
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 22:50

Chỉ có biến đổi tương đương:

\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)

b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc

Bình luận (0)
 Khách vãng lai đã xóa
Ngô Bá Hùng
19 tháng 11 2019 lúc 8:43

a)Bổ Đề còn đc vt dưới dạng \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) với \(x,y\ge0;xy\le1\).

Dấu ''='' xảy ra khi và chỉ khi \(xy=1\) hoặc \(x=y\ge0\)

Ta có

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{2}{1+xy}\Leftrightarrow\frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}\le\frac{2}{1+xy}\)

\(\Leftrightarrow xy\left(x^2+y^2\right)+2xy+x^2+y^2+2\le2x^2y^2+2\left(x^2+y^2\right)+2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\le0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\le0\)(*)

BĐT (*) đúng \(x,y\ge0;xy\le1\Rightarrow\) Bổ đề được chúng minh

Đẳng thức xảy ra khi \(xy=1\) hoặc \(x=y\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
huynh van duong
Xem chi tiết
Phạm Thanh Long
15 tháng 12 2021 lúc 13:02

em không biết

Bình luận (0)
 Khách vãng lai đã xóa
Hoài
15 tháng 12 2021 lúc 13:23

gà quá

Bình luận (0)
 Khách vãng lai đã xóa
Flower in Tree
15 tháng 12 2021 lúc 13:26

Từ giả thiết \(x+y+z=xyz=\frac{1}{xy}\)\(=\frac{1}{yz}\)\(=\frac{1}{zx}\)\(=1\)

Đặt \(\frac{1}{x}\)\(=a,\frac{1}{y}\)\(=b,\frac{1}{z}\)\(=c=ab+bc+ca=1\)

Ta có :

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)\(=\sqrt{\frac{1}{\sqrt{1+x^2}}+}+\sqrt{\frac{1}{\sqrt{1+y^2}}+\sqrt{\frac{1}{\sqrt{1+z^2}}}}\)

\(=\sqrt{\frac{1}{x}+x}+\sqrt{\frac{1}{y}+y}+\sqrt{\frac{1}{z}+z}=\sqrt{\frac{a}{a+\frac{1}{a}}}+\sqrt{\frac{b}{b+\frac{1}{b}}}\)\(+\sqrt{\frac{c}{c+\frac{1}{c}}}\)

\(=\frac{a}{\sqrt{a^2}+1}\)\(+\frac{b}{\sqrt{b^2}+1}\)\(+\frac{c}{\sqrt{c^2}+1}\)

Đến đây :

\(\frac{a}{\sqrt{a^2}+1}\)\(=\frac{a}{\left(a^2+ab+bc+ca\right)}\)\(=\frac{a}{\sqrt{\left(a+b\right)}\left(a+c\right)}\)

\(=\sqrt{\frac{a}{a+b}}\)\(\cdot\frac{a}{a+c}\)\(< \frac{1}{2}\)\(\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{c^2}+1}\)\(< \frac{1}{2}\)\(\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)

ộng 3 bất đẳng thức lại ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
Minh Triều
10 tháng 8 2016 lúc 8:07

z3 ak ? hỏi thử

Bình luận (0)
Hoàng Phúc
10 tháng 8 2016 lúc 8:11

z2 , nhầm chút

Bình luận (0)
Hoàng Phúc
12 tháng 8 2016 lúc 22:15

à thôi, hình như trong sách của t có bài tương tự rồi ~~~
 

Bình luận (0)
Nguyễn Tuấn Hào
Xem chi tiết