phân tích đa thức thành nhân tử
a) a^4 + 6a^2+11a+6
b)a^4+6a^3+7a^2-6a +1
=
phân tích đa thức thành nhân tử
a4 + 6a3 + 11a2 + 6a
a4 - 5a3 +4a
Phân tích đa thức thành nhân tử
a^3+3a^2-6a-8
`a^{3}+3a^{2}-6a-8`
`=a^{3}-8+3a(a-2)`
`=(a-2)(a^{2}+2a+4)+3a(a-2)`
`=(a-2)(a^{2}+2a+4+3a)`
`=(a-2)(a^{2}+5a+4)`
`=(a-2)(a+1)(a+4)`
\(a^3-8+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4+3a\right)\)
\(=\left(a-2\right)\left(a^2+5a+4\right)\)
\(\left(a-2\right)\left(a+1\right)\left(a+4\right)\)
\(a^3+3a^2-6a-8\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+5a+4\right)\)
\(=\left(a-2\right)\left(a+1\right)\left(a+4\right)\)
Phân tích đa thức thành nhân tử:6ab(a+6b)+6bc(b+6c)+6ca(c+6a)+217abc
phân tích đa thức thành nhân tử:a)x^5-x^3+x^2-1/5
b)5x^3-45x
c)16x^4y^2+2xy^5
d)a^3-8+6a^2-12a
e)x^4+x^3+x+1
a: Ta có: \(x^5-x^3+x^2-1\)
\(=x^3\left(x^2-1\right)+\left(x^2-1\right)\)
\(=\left(x-1\right)\cdot\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
b: Ta có: \(5x^3-45x\)
\(=5x\left(x^2-9\right)\)
\(=5x\left(x-3\right)\left(x+3\right)\)
c: Ta có: \(16x^4y^2+2xy^5\)
\(=2xy^2\left(8x^3+y^3\right)\)
\(=2xy^2\cdot\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
d: Ta có: \(a^3-8+6a^2-12a\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+6a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+8a+4\right)\)
e: Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
Phân tích đa thức thành nhân tử :
a . \(x^3-7x-6\)
b . \(x^3-19x-30\)
c . \(a^3-6a^2+11a-6\)
a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b )
\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
c )
\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)
Phân tích đa thức thành nhân tử
49b^2-a^2+6a-9
`49b^{2}-a^{2}+6a-9`
`=(7b)^{2}-(a-3)^{2}`
`=(7b-a+3)(7b+a-3)`
\(49b^2-a^2+6a-9\)
\(=49b^2-\left(a-3\right)^2\)
\(=\left(7b-a+3\right)\left(7b+a-3\right)\)
Phân tích đa thức thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
Hãy phân tích các đa thức sau thành nhân tử :
a) a2 + ab – 7a – 7b
b) 5ab + 4c + 20b + ac
c) a2 + 6a – b2 + 9
d) a2 – 16
a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)
b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)
c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)
d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)
2x^3+16y^3
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em