Rút gọn \(\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}\) với x>=0
giúp mình với ạ
giúp mình câu rút gọn với ạ :3
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1)))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1))))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`
rút gọn biểu thức sau
D=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
giải chi tiết hộ mình với ạ!!!
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Rút gọn biểu thức
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Mong mn giải cụ thể cho mình với ạ
\(ĐK:x\ge0;x\ne1;x\ne4\\ P=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\\ P=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{2\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-4}{3\sqrt{x}+3}\)
A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}\) - \(\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (1-\(\dfrac{3-\sqrt{x}}{\sqrt{x}+3}\))
a) Rút gọn A
b)Tính A khi x=\(\dfrac{1}{6-2\sqrt{5}}\)
c)Tìm x ∈ Z để A ∈ Z
Giups mình với ạ
a) \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+3}\right)\) (ĐK: \(x>0;x\ne1\))
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{3-\sqrt{x}}{\sqrt{x}+3}\right)\)
\(A=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+3-3+\sqrt{x}}{\sqrt{x}+3}\)
\(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}:\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+3}{2\sqrt{x}}\)
\(A=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
b) Ta có: \(x=\dfrac{1}{6-2\sqrt{5}}=\dfrac{1}{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot1+1^2}=\dfrac{1}{\left(\sqrt{5}-1\right)^2}=\left(\dfrac{1}{\sqrt{5}-1}\right)^2\)
Thay vào A ta có:
\(A=\dfrac{\sqrt{\left(\dfrac{1}{\sqrt{5}-1}\right)^2}+3}{\sqrt{\left(\dfrac{1}{\sqrt{5}-1}\right)^2}}=3\sqrt{5}-2\)
c) Ta có: \(\dfrac{\sqrt{x}+3}{\sqrt{x}}=1+\dfrac{3}{\sqrt{x}}\)
\(\Rightarrow\sqrt{x}\in\left\{1;3\right\}\)
\(\Rightarrow x\in\left\{1;9\right\}\)
A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}\) - \(\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (1+\(\dfrac{3-\sqrt{x}}{\sqrt{x}+3}\))
a) Rút gọn A
b)Tính A khi x=\(\dfrac{1}{6-2\sqrt{5}}\)
c)Tìm x ∈ Z để A ∈ Z
Giups mình với ạ
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)
\(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+3+3-\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+3}{6}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+3}{6}=\dfrac{\sqrt{x}+3}{3}\)
b: Khi \(x=\dfrac{1}{6-2\sqrt{5}}=\dfrac{6+2\sqrt{5}}{16}=\left(\dfrac{\sqrt{5}+1}{4}\right)^2\) thì \(A=\dfrac{\dfrac{\sqrt{5}+1}{4}+3}{3}=\dfrac{\sqrt{5}+1+12}{12}=\dfrac{13+\sqrt{5}}{12}\)
c: A là số nguyên
=>\(\sqrt{x}+3⋮3\)
=>\(\sqrt{x}⋮3\)
=>\(x=k^2\);\(k\in Z\)
Kết hợp ĐKXĐ, ta được: x là số chính phương và x>0 và \(x\ne1\)
Giúp mình với cảm ơn trước ạ
Bài 7: rút gọn \(\dfrac{\left(x-1\right)\sqrt{3}}{\sqrt{x^2-x+1}}x=2+\sqrt{3}\)
rút gọn biểu thức sau
A=\(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
giải chi tiết hộ mình với ạ !!!
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\left(x\ge0;x\ne25\right)\\ A=\dfrac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\\ A=\dfrac{5+\sqrt{x}}{\sqrt{x}+5}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+1}\)
(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)-\(\dfrac{3\sqrt{x}+2}{x-4}\) ) : \(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\) ( với x ≥ 0; x ≠ 4)
RÚT GỌN Ạ
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}-2}{x-4}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\dfrac{x+2\sqrt{x}+x-\sqrt{x}-2\sqrt{x}+2-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\times\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ =\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\times\dfrac{1}{\sqrt{x}-2}=\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)
( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) - \(\dfrac{3\sqrt{x}+2}{x-4}\) ) : \(\dfrac{\sqrt{x}-2}{x-4}\) ( với x ≥ 0; x ≠ 4)
RÚT GỌN Ạ
Với \(x\ge0;x\ne4\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{x-4}{\sqrt{x}-2}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}-2-3\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)
\(=\dfrac{2x-4\sqrt{x}}{x-4}.\dfrac{x-4}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}\)
Rút gọn biểu thức \(P=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\div\dfrac{2}{x-2\sqrt{x}}\) , với \(x>0,x\ne4\)
Ai giúp minh với ạ
\(P=\left(\dfrac{\sqrt{x}-2}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}\)
\(=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}\)
\(=\dfrac{2\sqrt{x}.\sqrt{x}.\left(\sqrt{x}-2\right)}{2.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x}{\sqrt{x}+2}\)