Phân tích đa thức thành nhân tử (x-2y)^3-(x-2y)^2(x+y)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
1.Đa thức 4x(2y-z) +7y(2y-z) được phân tích thành nhân tử là :
A .(2y+z)(4x+7y)
B.(2y-z)(4x-7y)
C.(2y+z)(4x-7y)
D. (2y-z)(4x+7y)
2 Phân tích đa thức x2+3x+xy+3y thành nhân tử ta được :
A. (x+3)(y+3)
B. (x-y)(x+3)
C. (x+3)(x+y)
D. Cả 3 đều sai
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
phân tích đa thức thành nhân tử
(x+y)^2-(x-y)^2
2x^2+5X^3+X^2Y
\(\left(x+y\right)^2-\left(x-y\right)^2\\ =\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\\ 2x^2+5x^3+x^2y=x^2\left(2+5x+y\right)\)
Phân tích đa thức thành nhân tử x^4-2y^4-x^2y^2+x^2+y^2
Đặt \(A=x^4-2y^4-x^2y^2+x^2+y^2\)
\(\Rightarrow2A=2x^4-4y^4-2x^2y^2+2x^2+2y^2\)
\(\Rightarrow2A=\left(x^4+2x^2+1\right)-\left(y^4-2y^2+1\right)\)\(+\left(x^4-2x^2y^2+y^4\right)-4y^4\)
\(\Rightarrow2A=\left(x^2+1\right)^2-\left(y^2-1\right)^2+\left(x^2-y^2\right)^2-4y^4\)
\(\Rightarrow2A=\left[\left(x^2+1\right)^2-4y^4\right]+\left[\left(x^2-y^2\right)^2-\left(y^2-1\right)^2\right]\)
\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-y^2+y^2-1\right)\left(x^2-y^2-y^2+1\right)\)
\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-1\right)\left(x^2+1-2y^2\right)\)
\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2+x^2-1\right)\)
\(\Rightarrow2A=\left(x^2-2y^2+1\right)\left(2x^2+2y^2\right)\)
\(\Rightarrow2A=2\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\)
\(\Rightarrow A=\left(x^2-y^2+1\right)\left(x^2+y^2\right)\)
Nhầm, tớ chốt lại: \(A=\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\), đừng xem cái câu cuối ở tin 1, sai đấy.
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) \(2x-2y-x^2+2xy-y^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(x^3-xy^2+x^2y-y^2z\)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
Phân tích đa thức thành nhân tử
\(y-x^2y-2xy^2-y^3\)
\(=y\left(1-x^2-2xy-y^2\right)=y\left[1-\left(x+y\right)^2\right]=y\left(1-x-y\right)\left(1+y+x\right)\)
\(x^2y-2xy^2+y^3\)
Phân tích đa thức thành nhân tử
\(x^2y-2xy^2+y^3=y\left(x^2-2xy+y^2\right)=y\left(x-y\right)^2\)
\(=y\left(x^2-2xy+y^2\right)=y\left(x-y\right)^2\)
\(x^2y-2xy^2+y^3=y\left(x^2-2xy+y^2\right)=y\left(x-y\right)^2\)
phân tích đa thức thành nhân tử : x^3-x^2y-xy^2+y^2
Phân tích đa thức thành nhân tử :x^3-x^2y-xy^2+y^2
\(x^3-x^{22}-xy^2+y^2\)
\(=x^2\left(x-1\right)-y^2\left(x-1\right)\)
\(=\left(x^2-y^2\right)\left(x-1\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x-1\right)\)
\(x^3-x^2y-xy^2+y^3\)
\(=\left(x^3-x^2y\right)-\left(xy^2-y^3\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2.\left(x+y\right)\)