phân tích đa thức thành nhân tử x^3-x^2+x-3=0
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:
\(5-7x^2\) (với x>0)
\(3+4x\) (với x<0)
\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)
\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)
\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )
\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)
phân tích đa thức thành nhân tử và tìm x
`a, 8x (x-3)+x-3=0`
`b, x^2+36=12x`
a) \(8x\left(x-3\right)+x-3=0\)
\(\Rightarrow8x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{8}\end{matrix}\right.\)
b) \(x^2+36=12x\)
\(\Rightarrow x^2-12x+36=0\)
\(\Rightarrow\left(x-6\right)^2=0\)
\(\Rightarrow x=6\)
Phân tích đa thức sau thành nhân tử:
(3x2 - 1)2 - (3 + x)2 = 0
\(\left(3x^2-1\right)-\left(x+3\right)^2\)
\(=\left(3x^2-1-x-3\right)\left(3x^2-1+x+3\right)\)
\(=\left(3x^2-x-4\right)\left(3x^2+x+2\right)\)
\(=\left(3x^2+3x-4x-4\right)\left(3x^2+x+2\right)\)
\(=\left(x+1\right)\left(3x-4\right)\left(3x^2+x+2\right)\)
Phân tích đa thức thành nhân tử:
\(x^2+12x+36=0\)
\(4x^2-4x+1=0\)
\(x^3+6x^2+12x+8=0\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
10/ tìm x ( áp dụng kiến thức phân tích đa thức thành nhân tử) a,2-x = 2(x-2)^3 c,(x-1.5)^6 + 2(1,5-x)^3= 0 d,2x^3+3x^2+3+2x =0
a: Ta có: \(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2+1\right]=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
c: Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^3=0\)
\(\Leftrightarrow\left(x-1.5\right)^6-2\left(x-1.5\right)^3=0\)
\(\Leftrightarrow\left(x-1.5\right)^3\cdot\left[\left(x-1.5\right)^3-2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1.5\\x=\sqrt[3]{2}+1.5\end{matrix}\right.\)
Câu 1: ( 2y - z ) ( 4x + 7y )
Câu 2 : 4x2y - 12xy + 9y ( phân tích đa thức thành nhân tử )
Câu 3 : ( x - 2 ) ( x + 3 ) + x ( x + 3 ) =0 ( tìm x )
\(1,=8xy+14y^2-4xz-7yz\\ 2,=y\left(4x^2-12x+9\right)=y\left(2x-3\right)^2\\ 3,\Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Câu 1: \(\left(2y-z\right)\left(4x+7y\right)=8xy-4xz+14y^2-7yz\)
câu 2: \(4x^2y-12xy+9y=y\left(4x^2-12x+9\right)\)
câu 3: \(\left(x-2\right)\left(x+3\right)+x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2x-2\right)=0\\ \Leftrightarrow2\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
phân tích đa thức thành nhân tử x-3 căn x với>0
x - 3 = ( √x )2 - ( √3 )2 = ( √x - √3 )( √x + √3 ) < với x > 0 >
Bài làm :
Ta có :
\(x-3=\left(\sqrt{x}\right)^2-\left(\sqrt{3}\right)^2=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
Cho x ≥ 0; phân tích đa thức E = 3 - x thành nhân tử, kết quả là:
A. E = 3 - x 2
B. E = x - 3 2
C. E = 3 - x x + 3
D. E = x + 3 x - 3