Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phúc Thuận
Xem chi tiết
Lê Phúc Thuận
Xem chi tiết
Anh2Kar六
29 tháng 1 2018 lúc 20:20

Ta có:   y2=\(\frac{\text{20412−5x^2}}{8}\)

Để y nguyên thì \(\frac{\text{20412−5x^2}}{8}\) nguyên => 20412−5x2⋮8

Suy ra 20412 và 5x2 có cùng số dư khi chia cho 8

Mặt khác 20412 chia 8 dư 4

Suy ra 5x2 phải chia 8 dư 4

Ta lại có x2  chia 8 dư 0;1;4 nên 5x2 chia 8 dư 0;5

Vậy không có cặp số nguyên (x;y) thỏa mãn đề bài

Nguyễn Lê Nhật Linh
Xem chi tiết
Trần Thị Kim Ngân
25 tháng 5 2017 lúc 18:07

\(5x^2+8y^2=20412\)

Vì \(8y^2⋮2\)và \(20412⋮2\)\(\rightarrow5x^2⋮2\rightarrow x^2⋮2\rightarrow x⋮2.\)

Đặt \(x=2k\left(k\in Z\right)\), ta có:

\(5\times4k^2+8y^2=20412\)

\(\leftrightarrow5k^2+2y^2=5103\)

Vì \(5103\)lẻ và \(2y^2\)chẵn nên \(5k^2\)lẻ \(\rightarrow k\)lẻ.

      +) Nếu \(y\) chẵn thì \(2y^2⋮4\)nên \(5103\)và \(5k^2\)có cùng số dư khi chia cho\(4\)

         Ta thấy \(5103\div4\)dư \(3\)thì \(5k^2\div4\)dư \(3\)\(\rightarrow k^2\div4\) dư \(3\).

         Vô lý, một số chính phương chia cho \(4\) chỉ có thể dư \(0\)hoặc\(1\).

       +) Nếu\(y\)lẻ thì \(y^2\)chỉ có tận cùng là \(1,5,9\)nên \(2y^2\)có tận cùng là \(2,0,8\)

          mà \(5k^2\)có tận cùng là 5 \(\rightarrow\)\(y^2\)có tận cùng là \(9\)

          \(\rightarrow y\)có tận cùng là\(3,7\)

Thử bằng máy tính cầm tay với các giá trị của \(y=3,13,23,33,43,7,17,27,37,47\)ta tìm được \(y=27\)thỏa mãn

\(\rightarrow k=27\rightarrow x=54\)

Vậy phương trình có nghiệm nghuyên là \(\left(x;y\right)=\left(54;27\right)\)

ILoveMath
Xem chi tiết
Akai Haruma
26 tháng 11 2021 lúc 21:58

1. 

PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$

$\Leftrightarrow (2x-y)^2+3y^2=16$

$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$

$\Rightarrow y^2\leq \frac{16}{3}< 9$

$\Rightarrow -3< y< 3$

Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$

Thay vô ta tìm được:

$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$

2.

PT $\Leftrightarrow 13y^2=20412$

$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)

oOo Min min oOo
Xem chi tiết
Lê Thị Ngọc Duyên
Xem chi tiết
OoO Min min OoO
Xem chi tiết
Edogawa Conan
Xem chi tiết
Yen Nhi
10 tháng 1 2022 lúc 21:06

Answer:

\(5x+53=2xy+8y^2\)

\(\Rightarrow2\left(5x+53\right)=2\left(2xy+8y^2\right)\)

\(\Rightarrow10x+106=4xy+16y^2\)

\(\Rightarrow10x-4xy=16y^2-106\)

\(\Rightarrow x=\frac{16y^2-106}{10-4y}\)

\(\Rightarrow x=\frac{\left(16y^2-100\right)-6}{10-4y}\)

\(\Rightarrow x=\frac{-\left(10-4y\right)\left(4y+10\right)}{10-4y}-\frac{6}{10-4y}\)

\(\Rightarrow x=-4y-10-\frac{6}{10-4y}\)

Để cho x và y thuộc Z thì 6 chia hết cho 10 - 4y

\(\Rightarrow10-4y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Trường hợp: \(\orbr{\begin{cases}10-4y=1\\10-4y=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4y=9\left(l\right)\\4y=11\left(l\right)\end{cases}}\)

Trường hợp: \(\orbr{\begin{cases}10-4y=2\\10-4y=-2\end{cases}}\Rightarrow\orbr{\begin{cases}4y=8\\4y=12\end{cases}}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=-21\\y=3\Rightarrow x=-19\end{cases}}\)

Trường hợp: \(\orbr{\begin{cases}10-4y=3\\10-4y=-3\end{cases}}\Rightarrow\orbr{\begin{cases}4y=7\left(l\right)\\4y=13\left(l\right)\end{cases}}\)

Trường hợp: \(\orbr{\begin{cases}10-4y=6\\10-4y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}4y=4\\4y=16\end{cases}}\Rightarrow\orbr{\begin{cases}y=1\Rightarrow x=-15\\y=4\Rightarrow x=-25\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Trần Duy Thiệu
Xem chi tiết