làm cho em bảng 3 câu 3 với ạ em cảm ơn
Làm cho em bài 3 với ạ , làm giúp em câu C thôi ạ.Em cảm ơn ạ
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
có ai làm gấp cho em 2 câu 2 và 3 này với đc ko em cảm ơn ạ!
Mn giải chi tiết hộ em câu 3 với,làm chi tiết hộ em ạ,em cảm ơn
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
có ai làm hộ em câu 2 và 3 này với đc ko em cảm ơn ạ!
z
Câu 3:
a: \(\Leftrightarrow\left(-m\right)^2-4\cdot2\cdot2=0\)
\(\Leftrightarrow m^2=16\)
hay \(m\in\left\{4;-4\right\}\)
b: \(\Leftrightarrow4-4\cdot3\cdot\left(m-1\right)=0\)
=>4-12(m-1)=0
=>4-12m+12=0
=>-12m=-16
hay m=4/3
Giúp em hết câu 2 la mã đến hết câu 3 la mã với ạ nếu được có thể làm thêm. Em cảm ơn
Dạ cho em hỏi câu này giải ra làm sao ạ??? Xin giúp em với,em cảm ơn ạ!!!!
Ai làm giúp em câu 3 và 4 này với được không ạ, mai em phải nộp rồi, cảm ơn mn nhiều.
Mn làm giúp em 3 câu đầu vs ạ . Em cảm ơn
Mọi người làm giúp em câu 3 và 4 này với được không ạ, mai em phải nộp rồi, cảm ơn mn nhiều.
Bài 3:
Gọi K là giao của AH và BC thì AK là đường cao thứ 3 (H là trực tâm)
Vì \(\widehat{BDC}=\widehat{BEC}=90^0\) nên BEDC nội tiếp
Lại có \(BI=IC=ID=IE=\dfrac{1}{2}BC\) (trung tuyến ứng cạnh huyền) nên I là tâm đg tròn ngoại tiếp BDEC
Gọi G là trung điểm AH thì \(AG=GD=DE=\dfrac{1}{2}AH\) (trung tuyến ứng ch)
Do đó G là tâm () ngoại tiếp tg ADE
Vì \(GA=GD\Rightarrow\widehat{DAG}=\widehat{GDA}\)
Vì \(ID=IB\Rightarrow\widehat{ABI}=\widehat{IDB}\)
Do đó \(\widehat{IDB}+\widehat{GDA}=\widehat{DAG}+\widehat{ABI}=90^0\left(\Delta AKB\perp K\right)\)
Do đó \(\widehat{IDG}=180^0-\left(\widehat{IDB}+\widehat{GDA}\right)=90^0\)
Vậy \(ID\perp IG\) hay ...
làm cho em câu 2 3 4 với em cám ơn ạ
3.
Xét \(I=\int\limits^1_0x^3f\left(x^2\right)dx=\int\limits^1_0x^2.f\left(x^2\right)xdx\)
Đặt \(x^2=t\Rightarrow x.dx=\dfrac{1}{2}dt;\) \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^1_0t.f\left(t\right).\dfrac{1}{t}dt=\dfrac{1}{2}\int\limits^1_0t.f\left(t\right)dt=3\)
\(\Rightarrow\int\limits^1_0t.f\left(t\right)dt=6\Rightarrow J=\int\limits^1_0x.f\left(x\right)dx=6\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow J=\dfrac{1}{2}x^2.f\left(x\right)|^1_0-\dfrac{1}{2}\int\limits^1_0x^2.f'\left(x\right)dx=2-\dfrac{1}{2}\int\limits^1_0x^2f'\left(x\right)dx=6\)
\(\Rightarrow\int\limits^1_0x^2f'\left(x\right)dx=-8\)
4.
\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)cosx.e^{sinx}dx\)
Xét \(J=\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)cosx.e^{sinx}dx\)
Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)
\(\Rightarrow J=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+J=\left(\dfrac{\pi}{2}+1\right)e-1\)