Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kaneki_ken
Xem chi tiết
Thanh Tùng DZ
5 tháng 5 2020 lúc 16:24

điều kiện : x,y,z khác 0

Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)

Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)

\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)

Áp dụng BĐT Cô-si cho 3 số dương,ta có :

\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)

Dấu "=" xảy ra khi | x | = | y | = | z |

Do đó : \(3=3\sqrt[3]{xyz}\)

\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)

+) Trường hợp x,y,z > 0 ta được x = y = z = 1

+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị

vậy....

Khách vãng lai đã xóa
Quyết Tâm Chiến Thắng
Xem chi tiết
Nguyễn Văn Tuấn Anh
4 tháng 9 2019 lúc 20:37

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

alibaba nguyễn
5 tháng 9 2019 lúc 11:02

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

alibaba nguyễn
5 tháng 9 2019 lúc 11:05

b/ \(5\left(xy+yz+zx\right)=4xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{4}{5}\)

Giả sử: \(x\le y\le z\)

\(\Rightarrow\frac{4}{5}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\)

\(\Leftrightarrow0< x\le0\)

Nên vô nghiệm

Nguyễn Vũ Thảo My
Xem chi tiết
Nguyễn Tuấn
4 tháng 1 2016 lúc 19:11

ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có

 

Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Khách vãng lai đã xóa
Trần Hữu Ngọc Minh
Xem chi tiết
Trí Tiên亗
17 tháng 10 2020 lúc 9:35

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

Khách vãng lai đã xóa
Anh Đỗ Nguyễn Thu
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 16:57

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Online Math
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2020 lúc 0:09

\(Q=\frac{1}{\frac{x}{y}+\frac{z}{x}+1}+\frac{1}{\frac{y}{z}+\frac{x}{y}+1}+\frac{1}{\frac{z}{x}+\frac{y}{z}+1}\)

Đặt \(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(Q=\frac{1}{a^3+c^3+1}+\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\)

Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow Q\le\frac{1}{ac\left(a+c\right)+1}+\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}\)

\(Q\le\frac{abc}{ac\left(a+c\right)+abc}+\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}\)

\(Q\le\frac{b}{a+b+c}+\frac{c}{a+b+c}+\frac{a}{a+b+c}=1\)

\(\Rightarrow Q_{max}=1\) khi \(a=b=c=1\) hay \(x=y=z\)

Khách vãng lai đã xóa
Việt Anh Hà
Xem chi tiết
NGuyễn Phúc Vinh
Xem chi tiết
Lê An
21 tháng 2 2016 lúc 16:06

Giả sử \(x\ge y\ge z\) rồi giải