xn- 2(x2-1) - x(xn-1- xn-3). Rút gọn đa thức n thuộc N và n> hoặc = 3
Khai triển và rút gọn biểu thức 1 - x + 2 1 - x 2 + . . . + n 1 - x n thu được đa thức P x = a 0 + a 1 x + . . . + a n x n . Tính hệ số a 8 biết rằng n là số nguyên dương thỏa mãn 1 C n 2 + 7 C n 3 = 1 n
A. 79
B. 99
C. 89
D. 97
Khai triển và rút gọn biểu thức
1 - x + 2 1 - x 2 + . + n 1 - x n thu được đa thức
P x = a 0 + a 1 x + . . + a n x n . Tính hệ số a 8 biết rằng n là số nguyên dương thỏa mãn 1 C n 2 + 7 C n 3 = 1 n
A. 79
B. 99
C. 89
D. 97
Ta có
1 C n 2 + 7 C n 3 = 1 n ⇔ n ≥ 3 2 n n - 1 + 7 . 3 ! n n - 1 n - 2 = 1 n ⇔ n ≥ 3 n 2 - 5 n - 36 = 0 ⇔ n = 9
Suy ra a 8 là hệ số của x 8 trong khai triển 8 1 - x 8 + 9 1 - x 9
Vậy ta thu được a 8 = 8 . C 8 8 + 9 . C 9 8 = 89
Đáp án C
Cho dãy (xn) thỏa 1<xn<2 và xn+1=1+xn-1/2xn^2 với mọi n thuộc N
a,chứng minh |xn-căn 2|<(1/2)^n với mọi n lớn hơn hoặc bằng 3
b,Tính lim xn
Cho n số X1, X2, X3, ...,Xn với Xk = 1 hoặc -1 (k = 1, 2, 3, ..., n). Chứng minh rằng nếu X1*X2 + X2*X3 +... + Xn - 1Xn thì n chia hết cho 4
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Cho n số nguyên X1; X2; X3;...;Xn trong đó mỗi số chỉ là 1 hoặc -1. Chứng minh rằng nếu X1.X2+X2.X3+...+Xn-1.Xn+Xn.X1=0 thì n chia hết cho 4
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
-Đáp án cuối cùng: \(n=3k+1\) hay \(n=3k+2\)
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Bài 1:8x-0,4=7,8*x+402
Bài 2:Ba lớp 6 có tất cả 120 học sinh. Số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C.Lớp 6B ít hơn lớp 6C là 6 học sinh. Tính số học sinh mỗi lớp.
Bài 3 Cho n số X1,X2,X3,...,Xn mỗi số có giá trị bằng 1 hoặc -1. CMR nếu X1*X2+X2*X3+...+Xn-1*Xn+Xn*X1=0 thì chia hết cho 4
Lưu ý: (X1,X2,X3,...,Xn) là dãy số liên tiếp nha!
Bài 1 :
8x - 0,4 = 7,8*x + 402
8x - 7,8*x = 402 + 0,4
0,2*x = 402,04
x= 402,04 : 0,2
x = 2012
Bài 2
Theo bài ra , số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C
=> Số học sinh lớp 6A bằng 1/3 số học sinh của cả 3 lớp
Số học sinh lớp 6A là :
120 x 1/3 = 40 học sinh
Tổng số học sinh lớp 6B và 6C là :
120 - 40 = 80 học sinh
Số học sinh lớp 6B là :
( 80 - 6 ) : 2 = 37 học sinh
Số học sinh lớp 6C là :
37 + 6 = 43 học sinh
Rút gọn biểu thức: xn-1(x + y) – y(xn–1 + yn–1)
x(x – y) + y(x – y)
= x.x – x.y + y.x – y.y
= x2 – xy + xy – y2
= x2 – y2 + (xy – xy)
= x2 – y2