Tìm tất cả các số nguyên tố x,y biết: \(x^2-6.y^2=1\)
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên dương x,y và các số nguyên tố p thỏa mãn : x^2+p^2y^2=6(x+2p)
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Bài 1: Tìm x;y nguyên tố biết 59.x + 46.y = 2004
Bài 2: Tìm tất cả các số nguyên tố p sao cho p2 + 14 là số nguyên tố
Ta có 46y là số chẵn với mọi y.
Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)
=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2
=>y=(2004-59.2)/46=41
Tìm tất cả các số nguyên dương x,y và các số nguyên tố p thỏa mãn : x^2+p^2q^2=6(x+2p)
Bài 1: Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố đó.
Bài 2: Tìm tất cả các số nguyên tố x,y,z sao cho \(x^2 - 6y^2 = 1\)
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2
Tìm tất cả các cặp số nguyên tố (x,y) biết /x+3/+/2y-2/=3
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
Tham khảo:
Nhưng có vẻ không đúng yêu cầu đề lắm :<
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)