Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 23:23

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-x_2^2-2x_2+2}{x_1-x_2}\)

\(=\left(x_1+x_2\right)-2\)

Vì \(x_1;x_2\in\left(-\infty;1\right)\) thì \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left(x_1+x_2\right)< 2\)

\(\Leftrightarrow\left(x_1+x_2\right)-2< 0\)

Vậy: Hàm số nghịch biến trên \(\left(-\infty;1\right)\)

Nguyen Dang Khoa
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 8:09

undefined

e học lp 9 nên k bic lập bảng biến thiên ạ 🙁

Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 15:00
x-∞-1+∞
y-∞4-∞

 

Ngô Văn Mạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:42
x-∞\(\dfrac{3}{4}\)+∞
y-∞\(\dfrac{1}{8}\)-∞

 

Lê Thị Như Thơm
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 0:22
x-∞-1+∞
y+∞-4+∞

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 10 2017 lúc 13:28

Ta có thể viết

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Từ đó có bảng biến thiên và đồ thị của hàm số

    y = |2x - 3| (h.32)

Giải sách bài tập Toán 10 | Giải sbt Toán 10

你混過 vulnerable 他 難...
Xem chi tiết
Ngô Thành Chung
28 tháng 12 2020 lúc 18:28

........

Ngô Thành Chung
28 tháng 12 2020 lúc 19:42

a, (1) có nghiệm duy nhất trên [-2 ; 2] khi

[-2 ; 2] khi \(\left[{}\begin{matrix}-4m=-8\\1\ge-4m>-7\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m=2\\\dfrac{-1}{4}\le m< \dfrac{7}{4}\end{matrix}\right.\) hay m ϵ [\(\dfrac{-1}{4};\dfrac{7}{4}\)\(\cup\left\{2\right\}\)

(1) có nghiệm duy nhất trên [2 ; 3] khi

- 4 ≥ - 4m ≥ - 7 ⇔ 1 ≤ m ≤ \(\dfrac{7}{4}\) hay m ∈\(\left[1;\dfrac{7}{4}\right]\)

(1) có nghiệm duy nhất trên  [-2; -1] khi 

-4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)

b, (1) có 2 nghiệm phân biệt trên [-2 ; 2] khi

-4m ∈ (-8 ; -7] ⇒ m ∈\(\)[\(\dfrac{7}{4}\); 2)

(1) có 2 nghiệm phân biệt trên [2; 3] và [-2; -1] khi m ∈ ∅

c, (1) có nghiệm trên đoạn 

[-2; 2] khi -8 ≤ -4m ≤ 1 ⇒ m ∈ \(\left[\dfrac{-1}{4};2\right]\)

[2 ; 3] khi - 4 ≥ - 4m ≥ - 7  hay m ∈\(\left[1;\dfrac{7}{4}\right]\)

[-2 ; -1] khi -4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)

d, dường như là nó giống câu b,

e, (1) vô nghiệm trên đoạn [-2 ; 2] khi 

\(\left[{}\begin{matrix}-4m>1\\-4m< -8\end{matrix}\right.\)hay \(m\in\left(-\infty;\dfrac{-1}{4}\right)\cup\left(2;+\infty\right)\)

(1) vô nghiệm trên đoạn [2; 3] khi 

m ∈ R \ \(\left[1;\dfrac{7}{4}\right]\)

(1) vô nghiệm trên [-2 ; -1] khi m ∈ R \ \(\left[\dfrac{-1}{4};1\right]\)

Có sai sót xin thông cảm

P/s :Bạn tự vẽ bảng biến thiên nha, nhớ chia khoảng cách các giá trị của x cho chuẩn vào, nhớ thêm cả f(0) và trong bảng nhá

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2017 lúc 4:29

y = –3x2 + 2x – 1.

+ Tập xác định: R

+ Đỉnh A(1/3 ; –2/3).

+ Trục đối xứng x = 1/3.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung là B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/3 là C(2/3 ; –1).

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số :

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2017 lúc 10:30

Hàm số y = x2 – 2x – 1 có a = 1 > 0 ; b = –2 ; c = –1:

+ Tập xác định D = R.

+ Nghịch biến trên (–∞ ; 1) ; đồng biến trên (1 ; + ∞).

Bảng biến thiên:

Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số là parabol có:

Đỉnh A(1 ; –2)

Trục đối xứng là đường thẳng x = 1.

Giao điểm với Oy tại B(0 ; –1). Điểm đối xứng với B qua đường thẳng x = 1 là C(2 ; –1).

Đi qua các điểm (3 ; 2) và (–1 ; 2).

Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10

Hoang
Xem chi tiết
Trần Bảo An
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:26

a: TXĐ: D=R

Khi \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=-\left(-x\right)^2-2\cdot\left(-x\right)+3\)

\(=-x^2+2x+3\)

\(\Leftrightarrow f\left(-x\right)\ne f\left(x\right)\ne-f\left(x\right)\)

Vậy: Hàm số không chẵn không lẻ