Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thầy Tùng Dương
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 1 2021 lúc 9:31

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

Khách vãng lai đã xóa

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

Khách vãng lai đã xóa
Phạm Thu Trang
19 tháng 2 2021 lúc 10:08

Kẻ đường kính BD.

ta có góc A = góc D ( góc nội tiếp chắn cung BC) 

=> sinA = sin D

có tam giác BCD vuông tại C => sinD = BD/BC

=> sinA = 2R/a

=> a/sinA=2R 

CMTT ta có b/sinB =2R

c/sinC=2R 

do đó a/sinA=b/sinB=c/sinC=2R

Khách vãng lai đã xóa
Megurine Luka
Xem chi tiết
alibaba nguyễn
5 tháng 6 2018 lúc 14:03

Kẽ đường cao AH

\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)

\(\Rightarrow AH=c.sinB=b.sinC\)

\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)

Tương tự ta cũng có

\(\frac{b}{sinB}=\frac{a}{sinA}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

lê thị thu huyền
Xem chi tiết
alibaba nguyễn
19 tháng 10 2017 lúc 10:29

Ta có: 

\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

Lạnh Lùng Boy
18 tháng 10 2017 lúc 12:45

k mik mik giai cho

Băng băng
19 tháng 10 2017 lúc 13:39

Lạnh lùng boy không giải được thì nói té đi còn bày đặt mình mình giải cho

trần thị thu
Xem chi tiết
Phan Nghĩa
24 tháng 10 2017 lúc 15:35

A B C H K

Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC

Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)

Lại có:

\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)

\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)

Từ 1 và 2, ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)

\(\RightarrowĐPCM\)

Ngọc Trương
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Hoa Thiên Lý
25 tháng 12 2015 lúc 16:34

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

Thu Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 18:49

\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)

GIẤU TÊN
Xem chi tiết
ngo thi diem
4 tháng 8 2016 lúc 20:12

minh biet lam cau b)

A B C D N M

ke phan giac AD  , BM vuong goc AD , CN vuong goc AD

sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)

ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)

=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)

dau = xay ra  <=> AD vuong goc BC  => AD la duong phan giac ,la  duong cao  => tam giac ABC can tai  A => AB=AC => b=c

tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)

=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)

ap dung cosi cjo 2 so duong   b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)

=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)

\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)

dau = xay ra <=> a=b=c hay tam giac ABC deu

Do hoang oanh
5 tháng 8 2016 lúc 15:51

nhìn bài toán kho hiểu nhỉ ???

hoàng ngọc nguyên
5 tháng 8 2016 lúc 18:20

mình chịu

Trương Ngọc Lan Vy
Xem chi tiết