Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Xuân Phong
Xem chi tiết
Mysterious Person
22 tháng 6 2017 lúc 18:39

C = \(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{12+2\sqrt{\left(\sqrt{13}+1\right)^2}}-\sqrt{\left(\sqrt{11}+1\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{14+2\sqrt{13}}-\left(\sqrt{11}+1\right)\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

C = \(\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{13}+\sqrt{11}\right)\)

C \(\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)\) = \(13-11\) = \(2\)

Trần Huyền
Xem chi tiết
Đặng Ngọc Quỳnh
5 tháng 10 2020 lúc 21:22

\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{12+2\sqrt{\left(\sqrt{13+1}\right)^2}}-\sqrt{\left(\sqrt{11+1}\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{12+2\sqrt{13+2}}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)

\(=\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)\(=\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{11}+\sqrt{13}\right)=13-11=2\)

Khách vãng lai đã xóa
Trần Huyền
6 tháng 10 2020 lúc 0:57

sao dấu= thứ 2 lại ra như vậy

Khách vãng lai đã xóa
Trần Huyền
6 tháng 10 2020 lúc 1:19

sai ở bc 2 rồi

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Phương Anh Nguyễn Thị
Xem chi tiết
Hà Nam Phan Đình
7 tháng 7 2017 lúc 12:21

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

Nguyễn Đức Phú Cường
Xem chi tiết
Trịnh Ánh Hồng
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
khoimzx
Xem chi tiết
Nguyễn Ngọc Linh
14 tháng 4 2020 lúc 23:34

Gọi A= \(\sqrt{5-\sqrt{13+2\sqrt{11}}}\) - \(\sqrt{5+\sqrt{13+2\sqrt{11}}}\) 

Lấy A bình phương rồi áp dụng hằng đẳng thức số 2 sẽ ra:

A^2 = \(10-\) \(2\sqrt{25-\left(13+2\sqrt{11}\right)}\)

\(10-2\sqrt{11-2\sqrt{11}+1}\)

\(10-2\sqrt{\left(\sqrt{11}-1\right)^2}\)

\(12-2\sqrt{11}\)

=\(11-2\sqrt{11}+1\)

\(\left(\sqrt{11}-1\right)^2\)

Suy ra A= \(\sqrt{11}-1\)

Khách vãng lai đã xóa
Trương Đào Gia Bảo
14 tháng 4 2020 lúc 23:39

\(a=\sqrt{5-\sqrt{13+2\sqrt{11}}}\); \(b=\sqrt{5+\sqrt{13+2\sqrt{11}}}\)dễ thấy \(a< b\)

ta có \(a^2+b^2=10;a.b=\left(\sqrt{11}-1\right)^{ }\).

Từ đây ta có \(\left(a-b\right)^2=\left(\sqrt{11}-1\right)^2\)kết hợp với a<b => a-b=1-\(\sqrt{11}\)

Khách vãng lai đã xóa
Nguyễn Hải Anh
Xem chi tiết
Đinh Đức Hùng
8 tháng 8 2017 lúc 21:37

Với n > 0 Ta có:

\(\frac{1}{\sqrt{n+1}-\sqrt{n}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)

\(=\sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+...+\frac{1}{\sqrt{10}-\sqrt{9}}\)

\(=\sqrt{16}+\sqrt{15}-\sqrt{15}-\sqrt{14}+...+\sqrt{10}+\sqrt{9}\)

\(\sqrt{16}+\sqrt{9}=3+4=7\)

HÒA ```` KỀU
Xem chi tiết