tim x,y,z
a.x/6=y/4=z/3 va x+y-z=21
b.3x=2y va x^2-y^2
Tim x, y va z, biet :
a) x/2 = y/3 = z/4 va x + y + z =18.
b) x/5 = y/-6 = z/7 va x + y - z =32.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
Ai biet thi chi giup minh nha. Cang nhanh cang tot ! Minh xin cam on.
X/2=y/2=z/4=x+y+z/9=18/9=2
X=2.2=4
Y=2.3=6
Z=2.4=8
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
b2:tìm x,y,z
a) x/3=y/4=z/5 va 2x+3y+5z=86
b) x/3=y/4; y/6=z/8 va 3x-2y-z=13
c) x/2=y'3=z/4 va xy+yz+zx=104
b3:tìm x,y,z
a)x/3=y/7=z/2 va 2x^2 +y^2 +3z^2=316
b)x:y:z=2:5:7 va 3x+2y-z=27
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Sửa lại bài 3a
Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)
Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)
tim x y z x/2=y/3 y/4=z/5 va x^2-y^2=16
3x/8=3y/6y=3z/216 va 2x^2+2y^2-z^2=1
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
a) Tìm 3 số x,y,z biết x:y:z=2:4:6 va 3x-y+z=24
b) Tim 3 số x,y,z biết x,y,z tỉ lệ nghịch 6,10,4 và x+2y-3z=115
a) Theo đề bài, ta có:
\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)
\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)
\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)
Vậy\(x,y,z\) lần lượt là: \(6,12,18\)
b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:
\(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)
Theo tính chất của dãy tỉ số bằng nhua, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)
\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)
\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)
\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)
Vậy x, y, z lần lượt là: -50; -30; -75
Ta có:
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)
x+2y-3z=115
Áp dụng tính chất của dãy tỉ số bằng nhau
EQ\F(x,6)=EQ\F(y,10)=EQ\F(z,4)=EQ\F(x+2y-3z,6+20-12)=EQ\F(115,14)
EQ\F(x,6)=EQ\F(115,14)=>x=EQ\F(345,7)
EQ\F(y,10)=EQ\F(115,14)=>y=EQ\F(575,7)
EQ\F(z,4)=EQ\F(115,14)=>z=EQ\F(230,7)
Vậy x=EQ\F(345,7)
y=EQ\F(575,7)
z=EQ\F(230,7)
Tim x, y, z:
1. 3x= 2y- 3z= 4z va x+ y- z= 46
2. 5x- 3y= 4y= 3z+ 10x va x+ y+ z= 28
3. 10x= 6y= 5z va x+ y- z= 24
4. 9x= 3y= 2z va x- y+ z= 50
3: 10x=6y=5z
\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)
hay x/3=y/5=z/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
Do đó: x=36; y=60; z=72
4: Ta có: 9x=3y=2z
nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)
hay x/2=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)
Do đó: x=20; y=60; z=90
Tim x,y va z
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{6}=\dfrac{z}{8}\)va \(3x-2y-z=13\)
Từ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\)
Và \(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\)\(\dfrac{y}{12}=\dfrac{z}{16}\)
Suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)\(\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=-1\Rightarrow x=-1\cdot9=-9\\\dfrac{y}{12}=-1\Rightarrow y=-1\cdot12=-12\\\dfrac{z}{16}=-1\Rightarrow z=-1\cdot16=-16\end{matrix}\right.\)
Ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{9}=\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{y}{12}=\dfrac{z}{16}\)(2)
Từ (1) và (2) , suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta được :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)
Do đó :
\(\dfrac{x}{9}=-1\Rightarrow x=-1.9=-9\)
\(\dfrac{y}{12}=-1\Rightarrow y=-1.12=-12\)
\(\dfrac{z}{16}=-1\Rightarrow z=-1.16=-16\)
Vậy x = -9 ; y = -12 ; z = -16
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{6}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{54}=\dfrac{y}{24}=\dfrac{z}{32}\)
\(=\dfrac{3x-2y-z}{27-24-16}\)
\(=\dfrac{13}{-13}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=9.-1=-9\\y=12.-1=-12\\z=16.-1=-16\end{matrix}\right.\)
tim x,y,z (cau a ) , tim x , y (cau b )
a, x : y : z = 3 : 4 : 5 va 5z2 - 3x2 - 2y2 = 594
b, z + y = x : y = 3.(x - y )
a) Đặt: x3=y4=z5=Kx3=y4=z5=K
=> x= 3K ; y = 4K ; z = 5K
Theo đề bài ta có: 5z2−3x2−2y2=5945z2−3x2−2y2=594
Hay: 5×(5K)2−3×(3K)2−2×(4K)2=5945×(5K)2−3×(3K)2−2×(4K)2=594
5 * 25K2 - 3* 9K2 - 2* 16K2 = 594
125K2 - 27K2 - 32K2 = 594
66K2 = 594
=> K2 = 594 : 66 = 9
=> K= căn của 9 = ±3±3
Với K = 3
=> x = 3 * 3 = 9
y = 4 * 3 = 12
z = 5 * 3 = 15
Với K = - 3
=> x = 3 * (- 3) = - 9
y = 4 * (- 3) = - 12
z = 5 * (- 3)= - 15
Vậy x = ±9±9 ; y = ±12±12 ; z = ±15
Tim x,y,z biet: a,(3x−2y)6+(y−5z)8+|z−2|=0(3x−2y)6+(y−5z)8+|z−2|=0
b,3x−2y4=2x−4z3=y−3z23x−2y4=2x−4z3=y−3z2va x+y+z=990
Gấp gấp gấp!
Tim x,y,z biet: a,(3x−2y)6+(y−5z)8+|z−2|=0(3x−2y)6+(y−5z)8+|z−2|=0
b,3x−2y4=2x−4z3=y−3z23x−2y4=2x−4z3=y−3z2va x+y+z=990
Gấp gấp gấp!
vãi 4 năm mà ko mtj thằng nào rep đã thế còn gấp
Ti le thuc x y ti le voi 2 3 va x+y =-15
X÷y=7÷20 y÷z=7÷3 va y-x-z=62
3/y=7/x va x+16=y
X y ti le voi 5;3 va x^2-y^2=4
5x=8y=20z va x-y-z=3
3x=2y;7y =5z va 2x+y-z=-28
2x/3=3y/4=4z/5 va 3x-4y+5z=65