Tìm số tự nhiên n để: 2n + 7 chia hết cho 3n + 5.
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
tìm số tự nhiên n để 2n + 3 chia 5 dư 3 và 3n - 3 chia hết cho 7
Có: 2n+3 chia 5 dư 3
=>2n+3-3 chia hết cho 5
=>2n chia hết cho 5
Lại có: 3n-3 chia hết cho 7
=>(3n-3)-(2n) chia hết cho 7 và 5
=>n-3 chia hết cho 7 và 5
Mà ƯCLN(7;5)=1
=> Số chia hết cho 7 và 5 thì chia hết cho 7.5=35
=>n-3 chia hết cho 35.
=>......................
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Có: 1n + 2n + 3n + 4n
= (1 + 2 + 3 + 4)n
= 10n
Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)
Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.
Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.
Ta có: 1n + 2n + 3n + 4n = 10n
Để 10n chia hết cho 5, ta cần n chia hết cho 5.
Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.
⇒ Các số tự nhiên n chia hết cho 5.
--thodagbun--
Bài 1: Tìm số tự nhiên n để:
a) (n+5 ) chia hết cho 2
b)(2n +9 chia hết cho (n+1)
c) (3n+5) chia hết cho (n-2)
d) (3n+1) chia hết cho (11-2n)
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
Tìm số tự nhiên n sao cho
a, (4n - 5) chia hết cho (2n -1)
b, (6n + 7) chia hết cho (3n - 2)
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
Tìm số tự nhiên n để :
a, 2n + 7 chia hết cho n + 1
b, 3n + 9 chia hết cho n - 1
Tìm số tự nhiên n để 3n+5 chia hết cho 2n+1
Tìm số tự nhiên n sao cho
a, (4n - 5) chia hết cho (2n -1)
b, (6n + 7) chia hết cho (3n - 2)
Tìm số tự nhiên n để :
a. n+9 chia hết n+4
b. 2n+7 chia hết n-3
c. 2n-11 chia hết n+4
d. 3n-8 chia hết n-5
a) Ta có: n + 9 = (n + 4) + 5
Do n + 4 \(⋮\)n + 4 => 5 \(⋮\)n + 4
=> n + 4 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
n + 4 | 1 | -1 | 5 | -5 |
n | -3(ktm) | -5(ktm) | 1(tm) | -9(ktm) |
Vậy ...
b) HD: 2n + 7 = 2(n - 3) + 13
còn lại tự trên
c;d tự làm tt
Edogawa Conan sai rồi cậu ơi!! Đề là số tự nhiên chứ không phải số nguyên.