Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hà Phương
Xem chi tiết
Trần Hải An
19 tháng 7 2016 lúc 7:18

- Cái ở dưới có vẻ dễ :)

Nguyễn Mai Quỳnh
19 tháng 7 2016 lúc 9:13

k vao se co cau tra loi

Đặng Hoàng Hiệp
19 tháng 7 2016 lúc 9:14

hay đấy

nguyen ha giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 11:29

ĐKXĐ: ...

\(4x^2+\frac{1}{x^2}-4\left(2x+\frac{1}{x}\right)+7=0\)

Đặt \(2x+\frac{1}{x}=a\Rightarrow a^2=4x^2+\frac{1}{x^2}+4\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

\(a^2-4-4a+7=0\)

\(\Leftrightarrow a^2-4a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{1}{x}=1\\2x+\frac{1}{x}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2-x+1=0\\2x^2-3x+1=0\end{matrix}\right.\)

Phan Nghĩa
Xem chi tiết
Vũ Thu Mai
20 tháng 9 2017 lúc 22:17

học lớp 6 mà đã phải giải bài phương trình khó thế này khổ nha 

ta đặt \(\sqrt[3]{7x+1}=a;-\sqrt[3]{x^2-x-8}=b;\sqrt[3]{x^2-8x-1}=c\)

ta có \(a^3+b^3+c^3=7x+1-x^2+x+8+x^2-8x-1=8\)

từ phương trình ta có \(a+b+c=2\Rightarrow\left(a+b+c\right)^3=8\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\)

=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

tự thay vào và giải tiếp nhé hình như làm 3 trương hợp thì phải

Lê Nhật Phương
23 tháng 3 2018 lúc 23:33

\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)

\(\Rightarrow\sqrt[3]{7x+1}+\sqrt[3]{x^2-8x-1}=2+\sqrt[3]{x^2-x-8}\)

Lập phương 2 vế lên ta được: \(\left(7x+1\right)\left(x^2-8x-1\right)=8\left(x^2-8x-8\right)\)

\(\Rightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)

\(2.10x^2+3x+1=\left(1+6x\right)\sqrt{x^2+3}\)

\(\Rightarrow x^2+3-\left(1+6x\right)\sqrt{x^2+3}+9x^2+3x-2=0\)

Nghiệm hơi xấu :(

nguyen ha giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 11:16

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{4}{x-8+\frac{7}{x}}+\frac{5}{x-10+\frac{7}{x}}=-1\)

Đặt \(x-10+\frac{7}{x}=a\)

\(\frac{4}{a+2}+\frac{5}{a}=-1\)

\(\Leftrightarrow4a+5\left(a+2\right)=-a\left(a+2\right)\)

\(\Leftrightarrow a^2+11a+10=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-10+\frac{7}{x}=-1\\x-10+\frac{7}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+7=0\\x^2+7=0\end{matrix}\right.\)

Kim Tuyến
Xem chi tiết
Akai Haruma
1 tháng 10 2021 lúc 6:02

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

Nguyễn Ngọc Anh
Xem chi tiết
Chibi
20 tháng 4 2017 lúc 16:52

ĐK: x \(\ne\) 0, \(\sqrt{2}\) < x < \(\sqrt{2}\)

Đặt y = \(\sqrt{2-x^2}\)

=> y2 = 2 - x2

Ta có hệ PT

\(\frac{1}{x}\)+\(\frac{1}{y}\)= 2

x2 + y2 = 2

<=>

\(\frac{x+y}{xy}\)= 2

(x + y)2 - 2xy = 2

Đặt S = x + y, P = xy

<=>

\(\frac{S}{P}\)= 2

S2 - 2P = 2

<=>

S = 2P

S2 - 2P = 2

=>

4P2 - 2P = 2

<=>

P = 1 và S = 2

Hoặc P = -1/2 và S = -1

TH1: P = 1 và S = 2

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 - 2X + 1 = 0

=> X = 1

=> Nghiệm x = 1

TH2: P = -1/2 và S = -1

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 + X -\(\frac{1}{2}\)= 0

<=>

X = \(\frac{-1-\sqrt{3}}{2}\)(Nhận) 

Hoặc X = \(\frac{-1+\sqrt{3}}{2}\)(Loại)

Vậy, Nghiệm của phương trình là:

x = 1

Hoặc x = \(\frac{-1-\sqrt{3}}{2}\)

Chibi
20 tháng 4 2017 lúc 16:57

Cái điều kiện là x \(\ne\)0, \(-\sqrt{2}\) < x < \(\sqrt{2}\)nhé.

Chibi
20 tháng 4 2017 lúc 17:06

Nghiệm x = \(\frac{-1+\sqrt{3}}{2}\) bị loại vì lúc này y = \(\frac{-1-\sqrt{3}}{2}\)

x > 0, y < 0 nên phép suy ra lúc ta đặt y = \(\sqrt{2-x^2}\)=> y2 = 2 - xkhông tương đương.

Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 15:10

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

Nguyễn Thị Thanh Trang
Xem chi tiết
B.Thị Anh Thơ
4 tháng 8 2019 lúc 10:31

Đặt \(\sqrt{x}=t\left(t>0\right)\)

\(\Leftrightarrow\frac{1}{1+t^2}+\frac{2}{1+t}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{1+t+2t+2t^2}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t^2+3t+1}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{\left(t+1\right)\left(2t+1\right)}{\left(1+t\right)\left(1+t^2\right)}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow\frac{2t+1}{1+t^2}=\frac{2+t}{2t^2}\)

\(\Leftrightarrow2t^2\left(2t+1\right)=\left(2-t\right)\left(1+t^2\right)\)

\(\Leftrightarrow4t^3+2t^2=2+2t^2+1+t^3\)

\(\Leftrightarrow t=1\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Full Moon
Xem chi tiết
Full Moon
16 tháng 10 2018 lúc 19:51

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự