Giải phương trình: \(\hept{\begin{cases}\frac{x^3+x^2+x}{x+1}=\left(y+3\right)\sqrt{\left(x+1\right)\left(y+2\right)}\\3x^2-8x-3=4\left(x+1\right)\sqrt{y+2}\end{cases}}\)
Giải phương trình:
\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
P/s: Cần gấp
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
giải phương trình \(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)
Giải phương trình :
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
Giải phương trình:
\(\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Giải phương trình:
\(12\sqrt{x}+\sqrt{x+1}=\frac{2}{\sqrt{x}}+\sqrt{169x-65}\)
Giải phương trình :
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)