cho △ABC,trung tuyến AM,biết AM=\(\dfrac{1}{2}\)BC.Chứng minh AB⊥AC
Cho tam giác ABC , đường trung tuyến AM. Chứng minh rằng: 2\(AM^2=AC^2+AB^2-\dfrac{1}{2}BC^2\): 2
Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng
a)\(AI < \dfrac{1}{2}\left( {AB + AC} \right)\)
b)\(AM < \dfrac{1}{2}\left( {AB + AC} \right)\)
a)
AI là đường vuông góc kẻ từ A xuống đoạn thẳng BC.
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}AI < AB\\AI < AC\end{array} \right.\\ \Rightarrow 2AI < AB + AC\\ \Rightarrow AI < \dfrac{1}{2}\left( {AB + AC} \right)\end{array}\) (đường vuông góc nhỏ hơn đường xiên)
b)
Lấy D sao cho M là trung điểm của AD
Xét \(\Delta ABM\) và \(DCM\) có
AM = DM ( do M là trung điểm của AD)
BM = CM ( do M là trung điểm của BC)
\(\widehat {AMB} = \widehat {CMD}\)( 2 góc đối đỉnh)
\( \Rightarrow \Delta ABM = \Delta DCM\left( {c - g - c} \right)\)
\( \Rightarrow AB = CD\)(2 cạnh tương ứng)
Xét \(\Delta ADC\) ta có: AD < AC + CD (bất đẳng thức tam giác)
\( \Rightarrow \) 2AM < AC + AB
\( \Rightarrow \) AM < \(\dfrac{1}{2}\)(AB + AC)
Cho tam giác abc, m là trung điểm bc.Chứng minh am<ab+ac:2
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Xét ΔCAD có CA+CD>AD
=>CA+AB>2AM
hay AM<1/2(AB+AC)
cho tam giác ABC. Gợi M là trung điểm của BC.Chứng minh rằng AM<AB+AC/2
Bài 1 : Cho tam giác ABC có AB=AC, M là trung điểm BC.Gọi điểm H thuộc AB và điểm K thuộc AC sao cho AH=AK.Gọi I là giao điểm của AM và HK.
Chứng minh: ΔABM=ΔACM
Chứng minh: AM⊥BC.
Chứng minh: HK song song BC
Cho (BAC) ̂=60^0.Tính (AHK) ̂
Cho △ABC vuông tại A (AB>AC) AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE ∼ △MFC b. Chứng minh AE . AB = AC . AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Lời giải:
Bạn tự vẽ hình nhé.
a) Ta thấy \(\widehat{MFC}=90^0-\widehat{MAF}(1)\)
VÌ $AM$ là trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM=MC\)
\(\Rightarrow \triangle AMB\) cân tại $M$
\(\Rightarrow \widehat{MBE}=\widehat{MBA}=\widehat{MAB}=90^0-\widehat{MAF}(2)\)
Từ \((1);(2)\Rightarrow \widehat{MFC}=\widehat{MBE}\)
Xét tam giác $MBE$ và $MFC$ có:
\(\left\{\begin{matrix} \widehat{MBE}=\widehat{MFC}\\ \widehat{BME}=\widehat{FMC}(\text{đối đỉnh})\end{matrix}\right.\) \(\Rightarrow \triangle MBE\sim \triangle MFC(g.g)\)
b) Theo phần a thì \(\widehat{MBE}=\widehat{MFC}\Leftrightarrow \widehat{ABC}=\widehat{AFE}\)
Xét tam giác $ABC$ và $AFE$ có:
\(\left\{\begin{matrix} \widehat{ABC}=\widehat{AFE}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle ABC\sim \triangle AFE(g.g)\)
\(\Rightarrow \frac{AB}{AF}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
c)
Do $AH,AM$ là hai đường cao tương ứng đỉnh $A$ của hai tam giác đồng dạng $ABC$ và $AFE$ nên \(\frac{AH}{AM}=\frac{AB}{AF}=\frac{AC}{AE}\)
Do đó \(\frac{S_{ABC}}{S_{AEF}}=\frac{\frac{AB.AC}{2}}{\frac{AE.AF}{2}}=\frac{AB}{AF}.\frac{AC}{AE}=\left(\frac{AH}{AM}\right)^2(*)\)
Xét tam giác $AMI$ và $AHM$ có:
\(\left\{\begin{matrix} \text{chung góc A}\\ \widehat{AMI}=\widehat{AHM}=90^0\end{matrix}\right.\Rightarrow \triangle AMI\sim \triangle AHM(g.g)\)
\(\Rightarrow \frac{AM}{AI}=\frac{AH}{AM}(**)\)
Từ \((*);(**)\Rightarrow \frac{S_{ABC}}{S_{AEF}}=\left(\frac{AM}{AI}\right)^2\) (đpcm)
Cho tam giác ABC có AB = AC;M là trung điểm của BC.Chứng minh:
1) AM là tia phân giác của góc BAC
2) AM vuông góc BC
(Đang cần gấp lắm )
Xét tam giác ACM và tam giác ABM
CM=MB
góc B= goc C
AC=AB
SUY RA 2 TAM GIÁ BẰNG NHAU( c-g-c)
suy ra góc CAM= góc BAM
suy ra AM là tia phân giác
Bài 3.
Cho ∆ABC vuông tại A, trung tuyến AM. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA
a) Tính góc ABD
b) Chứng minh ∆ABD = ∆BAC
c) Chứng minh AM = \(\dfrac{1}{2}\)BC.
d) Cho AB = 6cm, AC = 8cm. Tính khoảng cách từ
trọng tâm G của ∆ABC tới các đỉnh của tam giác
Bài 4.
Cho ∆ABC, trung tuyến AM = \(\dfrac{1}{2}\)BC
a) Chứng minh: ∠BMA = 2∠MAC , ∠CMA " = 2∠MAB
b) Tính ∠BAC
Bài 5. Cho ∆ABC vuông tại A, AB = 6cm, AC = 8cm
a) Tính BC
b) Đường thẳng đi qua trung điểm I của BC và
vuông góc với BC cắt AC tại D. Chứng minh
∠CBD = ∠DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE =
DC. Chứng minh ∆BCE vuông
Giải giúp mik với mn :(
Bài 3:
a) Xét ΔAMC và ΔDMB có
MA=MD(gt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(gt)
Do đó: ΔAMC=ΔDMB(c-g-c)
Suy ra: \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DB(Dấu hiệu nhận biết hai đường thẳng song song)
mà AC\(\perp\)AB(gt)
nên DB\(\perp\)AB
hay \(\widehat{ABD}=90^0\)
b) Xét ΔABD vuông tại B và ΔBAC vuông tại A có
BA chung
BD=AC(ΔDMB=ΔAMC)
Do đó: ΔABD=ΔBAC(hai cạnh góc vuông)
c) Ta có: ΔABD=ΔBAC(cmt)
nên AD=BC(hai cạnh tương ứng)
mà \(AM=\dfrac{1}{2}AD\)(gt)
nên \(AM=\dfrac{1}{2}BC\)
Cho tam giác ABC có BD, CE là 2 đường trung tuyến cắt nhau tạo G , AG cắt BC tại M.Chứng minh: AM<\(\dfrac{AB+AC}{2}\)
Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>M là trung điểm của BC
Lấy D sao cho M là trung điểm của AD
Xet tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AD>AC+CD=AC+AB
=>AM<1/2(AB+AC)
bài 1 cho tam giác ABC trung tuyến AM đường trung trực của AB cắt AM tại O chứng minh O cách đều 3 đỉnh của tam giác
bài 2 cho tam giác ABC có AB<AC đường trung trực của BC cắt AC tại N chứng minh AM+BM=AC
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC