Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>M là trung điểm của BC
Lấy D sao cho M là trung điểm của AD
Xet tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AD>AC+CD=AC+AB
=>AM<1/2(AB+AC)
Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>M là trung điểm của BC
Lấy D sao cho M là trung điểm của AD
Xet tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AD>AC+CD=AC+AB
=>AM<1/2(AB+AC)
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
Cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G,AC cắt BC tại M.
a) Chứng minh DE song song BC và DE= 1/2 BC
b) chứng minh (AB+AC-BC)/2 <AM< (AB+AC)/2
c) Đường thẳng qua B song song CG cắt đường thẳng C song song BG. CM A,G,I thẳng hàng
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
cho tam giác abc , đường trung tuyến bd và ce cắt nhau tại g , biết bd = ce
a,chứng minh : AG vuông góc với BC
b,cho M là một điểm nằm trong tam giác
Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G và BD<CE.
a) So sánh: BG và CG; GBC và GCB.
b) AG cắt BC tại M, chứng minh M là trung điểm của BC và AG = 2GM.
Cho tam giác ABC có hai đường trung tuyến BD và CE cắt nhau tại G và BD<CE.
a) So sánh: BG và CG; GBC và GCB.
b) AG cắt BC tại M, chứng minh M là trung điểm của BC và AG = 2GM.
cho tam giác ABC vuông cân tại A.vẽ 2 trung tuyến BD và CE cắt nhau tại G .chứng minh a)AG vuông góc với BC b)BD=CE
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G . Biết BD = CE
a) Chứng minh tam giác GBC là tam giác cân
b) Chứng minh DG + EG > 1/2 BC
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.