Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Mai
Xem chi tiết
Lê Quỳnh Mai
Xem chi tiết
NGUYEN HUYEN TRANG
17 tháng 7 2015 lúc 20:03

A=[(X2-2XY+Y2)+2(X-Y)+1]+(Y2-8Y+16)=(X-Y+1)2+(Y-4)2>=0

=>Amin=0 khi y=4;x=3

Ngọc Nguyễn Thị Bích
Xem chi tiết
Tiên Nguyễn Lê Thủy
22 tháng 9 2016 lúc 15:48

A= (x2-2xy +y2)+(2x-2y)+1+(y2-8y+16)

A= (x-y)2 +2(x-y) +1 +(y-4)2

A= (x-y+1)2 +(y-4)2

Vì (x-y+1)2 +(y-4)2 >= 0 với mọi x,y

Dấu = xảy ra <=> x-y+1=0 và y-4=0

                   <=> x=3 và y=4

Hoàng Thị Ngọc Cầm
Xem chi tiết
『 Trần Diệu Linh 』
20 tháng 5 2018 lúc 18:19

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

_Guiltykamikk_
20 tháng 5 2018 lúc 18:34

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)

l҉o҉n҉g҉ d҉z҉
20 tháng 9 2020 lúc 10:49

x2 - 2xy + 2y2 + 2x - 10y + 17

= ( x2 - 2xy + y2 + 2x - 2y + 1 ) + ( y2 - 8y + 16 )

= [ ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 1 ] + ( y - 4 )2

= [ ( x - y )2 + 2( x - y ) + 12 ] + ( y - 4 )2

= ( x - y + 1 )2 + ( y - 4 )2 ≥ 0 ∀ x, y

Đẳng thức xảy ra <=> x = 3 ; y = 4

Vậy GTNN của biểu thức = 0 <=> x = 3 ; y = 4

Khách vãng lai đã xóa
Hoàng Phạm
Xem chi tiết
Pham Van Hung
29 tháng 7 2018 lúc 8:32

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

Phạm Trọng Mạnh
Xem chi tiết
Phạm Thế Mạnh
25 tháng 11 2015 lúc 10:53

A=(x2+y2+1-2xy+2x-2y)+(y2-8y+16)
A=(x-y+1)2+(y-4)2>=0
MinA=0 khi và chỉ khi xảy ra đồng thời y-4=0 và x-y+1=0
                                               <=>y=4;x=3

Tran Thi Tam Phuc
Xem chi tiết
Tran Thi Tam Phuc
25 tháng 11 2016 lúc 20:18

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

alibaba nguyễn
25 tháng 11 2016 lúc 20:33

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

alibaba nguyễn
25 tháng 11 2016 lúc 20:41

Mấy con còn lại làm tương tự nhé bạn

Ngô Hải Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 16:30

Ta có: \(A=x^2-2xy+2y^2+2x-10y+17\)

\(=x^2-2xy+y^2+y^2+2x-2y-8y+1+16\)

\(=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Ta có: \(\left(x-y+1\right)^2\ge0\forall x,y\)

\(\left(y-4\right)^2\ge0\forall y\)

Do đó: \(\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\) là 0 khi x=3 và y=4

Tram Kam
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:50

`x^2-2xy+2y^2+2x-10+2038`

`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`

`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`

`=(x-y+1)^2+(y-4)^2+2021>=2021`

Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)

Trúc Giang
28 tháng 6 2021 lúc 16:52

\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)

Dấu = xảy ra khi:

\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

=> x = 3 và y = 4