Giải phương trình:
\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
P/s: Mấy bn lớp 9 đâu nhể? Nhảy ra giúp cái
Ko tiếp Spam nên đừng giới thiệu
Giải phương trình \(9''\sqrt{4x+1}-\sqrt{3x-2}''=x+3\)
CMR \(2^{4n}-1⋮15\), \(n\in\)N*
Ko tiếp SPAM nên ko cần giới thiệu
Ta có :\(2^4\)đồng dư với 1 ( mod 15)
=>\(2^{4n}\)đồng dư với 1 ( mod 15)
=>\(2^{4n}-1\)đồng dư với 0 ( mod 15)
=>\(2^{4n}-1⋮15\)
Vậy \(2^{4n}-1⋮15\)
Giải phương trình \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4x=3\sqrt{2}-1\)
Phương pháp giải như sau :
Trước hết phải có ĐKXĐ là \(x>1\)
Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\) (1)
Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có
\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên
(1) \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)
Kết luận:... (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)
Giải phương trình \(6\sqrt{4x+1}+2\sqrt{3-x}=3x+14\)
ĐK: \(-\dfrac{1}{4}\le x\le3\)
\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
giải các phương trình sau:
a. \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c. \(\sqrt{\dfrac{3x-2}{x+1}}=3\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Giải phương trình:
\(2x^2-6x-1=\sqrt{4x+5}\)
Các bn giúp mình với ạ!!!
Ở lớp 7, các em đã học cách trao đổi về một bài thơ, đoạn thơ và về một vấn đề đặt ra trong tác phẩm văn học. Bài học này sẽ tiếp tục giúp các em rèn luyện kĩ năng trình bày giới thiệu về một vấn đề nội dung hay nghệ thuật của tác phẩm văn học.
Giải phương trình sau
\(\sqrt{\frac{x^2+2}{x^2-1}}-\sqrt{\frac{x^2+3}{x^2+1}}=1\)\(1\)
các bạn giúp mk nha , mk cảm ơn nhiều
ai làm được mk tick cho 3 tick
à , không được xét bảng đâu
Câu hỏi: Giải phương trình sau ....
Trả lời: Đây là bài lp 9
Mk lp 7 nên ko bt
Giải phương trình :
\(\sqrt{12-\frac{3}{x^2}}+\sqrt{4x^2-\frac{3}{x^2}}=4x^2\)
\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)
ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)
<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)
=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1
thay vào phương trình ban đầu đều thỏa mãn => pt có 2 nghiệm x=1; x=-1