Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huế Anh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:56

Gọi D là giao điểm của IC và MNE là giao điểm của IA và PNF là giao điểm của IB và PM.

Ta có: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.

Xét tam giác vuông INC và tam giác vuông IMC:

     IC chung;

     IN = IM.

Vậy \(\Delta INC = \Delta IMC\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {MIC} = \widehat {NIC}\)( 2 góc tương ứng).

Tương tự: \(\Delta IPA = \Delta INA\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIA} = \widehat {NIA}\)( 2 góc tương ứng).

     \(\Delta IPB = \Delta IMB\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIB} = \widehat {MIB}\)( 2 góc tương ứng).

Xét hai tam giác IDN và IDM có:

     ID chung;

     \(\widehat {NID} = \widehat {MID}\);

     IN = IM.

Vậy \(\Delta IDN = \Delta IDM\)(c.g.c)

\(\Rightarrow DN = DM\) ( 2 cạnh tương ứng);

 \(\widehat {IDN} = \widehat {IDM}\) ( 2 góc tương ứng)

Mà  \(\widehat {IDN} + \widehat {IDM}=180^0\) ( 2 góc kề bù)

\(\Rightarrow \widehat {IDN} = \widehat {IDM}= 180^0:2=90^0\).

Suy ra: IC là đường trung trực của cạnh MN.

Tương tự ta có:

IA là đường trung trực của cạnh PN; IB là đường trung trực của cạnh PM.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 10 2018 lúc 7:58

Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được

MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.

Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.

Phùng Trần Hà Phúc
Xem chi tiết
Trần Minh Hoàng
27 tháng 5 2021 lúc 7:04

Gọi E là giao điểm các đường trung trực của MN và BC.

Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).

Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).

Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).

Lại có BM = CN và AB = CD nên AM = ND.

Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)

\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).

Suy ra E thuộc đường trung trực của MN.

Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.

Trần Minh Hoàng
27 tháng 5 2021 lúc 7:05

undefined

Hoa Thiên Cốt
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Hồng Thanh Toàn
16 tháng 10 2023 lúc 19:28

a, C/m CP // AB
Xét ΔANM và ΔCNP. Ta có:
NM = NP (gt)
∠N1 = ∠N2 (đối đỉnh)
NA = NC (gt)

⇒ ΔANM = ΔCNP (c.g.c)
Nên: ∠A = ∠C1 (hai góc tương ứng)
Mà ∠A và ∠C1 ở vị trí so le trong
⇒ CP // AB
b, C/m MB = CP
Ta có: MA = CP (vì ΔANM = ΔCNP)
Mà MA = MB (gt)
⇒ MB = CP
c, C/m BC = 2MN
Nối BP. Xét ΔMBP và ΔCPB. Ta có:
BM = CP (gt)
∠B1 = ∠P1 (so le trong)
BP cạnh chung
⇒ ΔMBP = ΔCPB (c.g.c)
Nên: MP = BC (hai cạnh tương ứng)
Mà: MP = 2MN (vì N là trung điểm của MP)
⇒ BC = 2MN
 

nguyễn thị hương giang
16 tháng 10 2023 lúc 19:30

loading...

Myka Hồ
Xem chi tiết
oOo Cô nàng cá tính oOo
28 tháng 3 2016 lúc 16:36

Xin lỗi,mk mới hok lớp 6 thui à!

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
21 tháng 9 2023 lúc 13:57

Tham khảo:

Theo giả thiết ta có :

OA = OB, MA = MB ( do M là trung điểm AB )

\( \Rightarrow \) MO là đường trung trực của đoạn thẳng AB

\( \Rightarrow \) MO vuông góc với AB

Theo giả thiết ta có :

OA = OC, PC = PA ( do P là trung điểm AC )

\( \Rightarrow \) PO là đường trung trực của đoạn thẳng AC

\( \Rightarrow \) PO vuông góc với AC

Theo giả thiết ta có :

OC = OB, NC = NB ( do N là trung điểm BC )

\( \Rightarrow \) NO là đường trung trực của đoạn thẳng BC

\( \Rightarrow \) NO vuông góc với BC