Gọi E là giao điểm các đường trung trực của MN và BC.
Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).
Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).
Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).
Lại có BM = CN và AB = CD nên AM = ND.
Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)
\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).
Suy ra E thuộc đường trung trực của MN.
Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.