cho x^2+xy+y^2=5
tính giá trị của biểu thứcA=x^4+y^4+(x+y)^4
Tìm y :
102,5 : ( y - 69,3 ) = 5
Tính giá trị biểu thức
a) 365,4 : ( 25,2 + 18,3 ) - ( 40 - 32,3 ) ✖ 0,2
b) \(\dfrac{2}{5}\): ( \(\dfrac{4}{5}\) - \(\dfrac{1}{2}\) ) + \(\dfrac{3}{4}\)
Bài 1:
=>y-69,3=20,5
hay y=89,8
Bài 2:
a: \(=365.4:43.5-7.7\cdot0.2\)
=8,4-1,54=6,86
b: \(=\dfrac{2}{5}:\dfrac{8-5}{10}+\dfrac{3}{5}=\dfrac{2}{5}\cdot\dfrac{10}{3}+\dfrac{3}{5}=\dfrac{20+9}{15}=\dfrac{29}{15}\)
rút gọn rồi tính giá trị biểu thức
a, I = x (y^2 - xy^2) + y (x^2y - yx = x) tại x = 3 và y =1/3
b, K = x^2 ( y^2 +xy^2 +1) - ( x^3 +x^2 +1 ) y^2 tại x = 0,5 và y = -1/2
tìm x bt
a, 2 ( 5x - 8 ) - 3 ( 4x - 5 ) = 4 ( 3x - 4 ) + 11
b, 2x ( 6x - 2x^2 ) + 3x^2 ( x - 4) = 8
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
tính giá trị của biểu thức
a) \(A=2x^2-\dfrac{1}{3}y,t\text{ại}x=2;y=9\)
b) \(P=2x^2+3xy+y^2t\text{ại }x=-\dfrac{1}{2};y=\dfrac{2}{3}\)
c) \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)t\text{ại}x=2;y=\dfrac{1}{4}\)
a) \(A=2x^2-\dfrac{1}{3}y\)
A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)
A=\(\dfrac{5}{3}\)\(x^2y\)
Tại \(x=2;y=9\) ta có
A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60
Vậy tại \(x=2;y=9\) biểu thức A= 60
b) P=\(2x^2+3xy+y^2\) (\(y^2\) là 1\(y^2\) nha bạn)
P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)
P= 6\(x^3y^3\)
Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có
P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)
Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)
c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)
=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)
=\(-\dfrac{1}{3}\)\(x^4y^2\)
Tại \(x=2;y=\dfrac{1}{4}\)ta có
\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)= \(-\dfrac{1}{3}\)
CHÚC BẠN HỌC TỐT NHA
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
1/ phân tích đa thức thành nhân tử
a)5x – 20y
b)5x.(x – 1) – 3x(x – 1)
c) x.(x+y) – 5x – 5y
2/tính giá trị biểu thức
a) X2 + xy + x tại x = 77 , y = 22
b) X . ( x – y ) + y . ( y – x ) tại x = 53 ,y = 3
3/ tìm x biết
a) X + 5x2 = 0
b) X + 1 = ( x + 1 )2
4 / tính nhanh
a) 97 . 13 + 130 . 0,3
b)86 . 153 – 530 . 8,6
C) 85 .12,7 + 5,3 . 12,7
D)52.143 – 52 . 39 – 8.26
1/
a)5x – 20y=5(x-4y)
b) 5x.(x – 1) – 3x(x – 1)=2x(x-1)
c) x.(x+y) – 5x – 5y=c) x.(x+y) – 5(x+y)=(x-5)(x+y)
2/
a)x2 + xy + x = x(x+y+1)=77.(77+22+1)=77.100=7700
b) x . ( x – y ) + y . ( y – x )=(x-y)(x-y)=(x-y)2=(53-3)2=2500
3/
a) X + 5x2 = 0
⇒x(x+5)=0
⇒hoặc x=0
x+5=0⇒x=-5
b)x + 1 = ( x + 1 )2
⇒(x + 1)-( x + 1 )2 =0
⇒x(x+1)=0
⇒ hoặc x=0
hoặc x+1=0⇒x=-1
4/
a) 97 . 13 + 130 . 0,3 = 97.13+13.10.0,3=97.13+13.3=100.13=1300
b)86 . 153 – 530 . 8,6=86.153–53.10.8,6=86.153-53.86=86.100=8600
C) 85 .12,7 + 5,3 . 12,7= 12,7(85+5,3)=12,7.90,3=1146,81
D)52.143 – 52 . 39 – 8.26=52(143-39)-8,26=52.104-8,26=5399,74
Bài 1:
a) 5x-20y=5(x-4y)
b) \(5x\left(x-1\right)-3x\left(x-1\right)=2x\left(x-1\right)\)
c) \(x\left(x+y\right)-5x-5y=\left(x+y\right)\left(x-5\right)\)
Bài 2:
a) \(x^2+xy+x\)
\(=x\left(x+y+1\right)\)
\(=77\cdot\left(77+22+1\right)\)
=7700
b) \(x\left(x-y\right)+y\left(y-x\right)\)
\(=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)^2\)
\(=50^2=2500\)
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)
\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)
\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
Cho x+y= 1.Tính giá trị của biểu thức:
M= -x^4+ y^4+ x^3- x^2y+ xy^2- y^3
Cho biểu thức B= (\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)) : \(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
a) Với giá trị nào của x,y thì BT được xác định
b) Rút gọn BT
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)