Tìm gtnn của x^2+6x-10
Tìm GTNN của
Q=2x^2-6x
M=x^2 +y^2-x+6x +10
\(Q=2x^2-6x\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\forall x\)
Dấu"=" xảy ra<=>\(2\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
\(M=x^2+y^2-x+6x+10\)
\(=x^2+y^2+5x+10\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+10+y^2\)
\(=\left(x+\frac{5}{2}\right)^2+y^2+\frac{15}{4}\)
Vì \(\hept{\begin{cases}\left(x+\frac{5}{2}\right)^2\ge0;\forall x,y\\y^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+y^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+y^2+\frac{15}{4}\ge0+\frac{15}{4};\forall x,y\)
Hay \(M\ge\frac{15}{4};\forall x,y\)
Dấu =" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{5}{2}\right)^2=0\\y^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=0\end{cases}}\)
Vậy MIN \(M=\frac{15}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=0\end{cases}}\)
tìm GTNN của B= x^4-2xy(x^2-4y) + x^2 - 6x+10
các anh chị pro toán giúp em
tìm GTNN của biểu thức B=x^4-2xy(x^2-4y)+x^2-6x+10
có ai giúp em không
1.tìm gtln của biểu thức 10+2x-5x^2
2.tìm gtnn của biểu thức x^2-6x+10
Mn giúp vs
a) Đặt \(A=10+2x-5x^2\)
\(-A=5x^2-2x-10\)
\(-5A=25x^2-10x-50\)
\(-5A=\left(25x^2-10x+1\right)-51\)
\(-5A=\left(5x-1\right)^2-51\)
Do \(\left(5x-1\right)^2\ge0\forall x\)
\(\Rightarrow-5A\ge-51\)
\(A\le\frac{51}{5}\)
Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)
b) Đặt \(B=x^2-6x+10\)
\(B=\left(x^2-6x+9\right)+1\)
\(B=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(B\ge1\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy Min B \(=1\Leftrightarrow x=3\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTNN của B=2x^2+y^2-2xy+6x+10
2x2 + y2 + 2xy - 6x - 2y + 10
= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5
= (x + y - 1)2 + (x - 2)2 + 5 ≥≥ 5
Dấu ''='' xảy ra khi {x+y−1=0x−2=0{x+y−1=0x−2=0 ⇔{y=−1x=2⇔{y=−1x=2
Vậy Min = 5 khi x = 2 và y = - 1
Ta có: \(B=2x^2+y^2-2xy+6x+10\)
\(=x^2-2xy+y^2+x^2+6x+9+1\)
\(=\left(x-y\right)^2+\left(x+3\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=y=-3
Vậy: \(B_{min}=1\) khi (x,y)=(-3;-3)
Tìm GTNN của
x2-8x+1
x^2-4x+y^2-6y+2
X4-6x^2+10
x^6-2x^3+x^2-2x+2
x^4-4x^3+6x^2-4x+5
1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15
mà ( x - 4 )2 > 0
=> ( x - 4 )2 -15 > 0
Vậy -15 là gt min của biểu thức khi x = 4
2. x2 - 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
( y - 3)2 > 0
Vậy -11 là gt min của biểu thức khi x=2 và y = 3
Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^
Tìm GTLN của Q=\(-2x^2+6x+8\)
Tìm GTLN và GTNN của: A=\(\dfrac{6x+17}{x^2+2}\)
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
tìm gtnn của các biểu thức sau
Q=2x2-6x
M=x2+y2-x+6y+10
Ta có : 2x2 - 6x
= \(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)
Q\(=\left(\sqrt{2}x-6\right)^2-36\)
Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)
Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)
Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)