Tìm \(x\)
\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
Gải pt: \(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{2x-27}{29}\)
\(\Leftrightarrow\dfrac{x-1}{13}-1-\dfrac{2x-13}{15}-1=\dfrac{3x-15}{27}-1-\dfrac{2x-27}{29}-1\)
\(\Leftrightarrow\dfrac{x-1-13}{13}-\dfrac{2x-13-15}{15}=\dfrac{3x-15-27}{27}-\dfrac{4x-27-29}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2x-24}{15}=\dfrac{3x-42}{27}-\dfrac{4x-56}{29}\)
\(\Leftrightarrow\dfrac{x-14}{13}-\dfrac{2\left(x-14\right)}{15}-\dfrac{3\left(x-14\right)}{27}-\dfrac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\) ( Vì: \(\dfrac{1}{13}-\dfrac{2}{15}-\dfrac{3}{27}-\dfrac{4}{29}\ne0\))
\(\Leftrightarrow x=14\)
GIẢI PHƯƠNG TRÌNH
1)\(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
2)x(x+1)(x+2)(x+3)=24
3)\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
4)\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903-x}{91}+4=0\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
giải các phương trình
a. \(|2-5x|=\left|3x+1\right|\)
b. \(\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
c. \(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\)
\(\text{a) }\left|2-5x\right|=\left|3x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}2-5x=3x+1\\2-5x=-3x-1\end{matrix}\right. \Leftrightarrow\left[{}\begin{matrix}-5x-3x=1-2\\-5x+3x=-1-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-1\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{8}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{\dfrac{1}{8};\dfrac{3}{2}\right\}\)
\(\text{b) }\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)
ĐXKĐ của phương trình \(:x\ne\pm5\)
\(\text{Ta có }:\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{2\left(25-x^2\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{3}{4\left(x-5\right)}-\dfrac{15}{2\left(x+5\right)\left(x-5\right)}+\dfrac{7}{6\left(x+5\right)}=0\\ \Rightarrow\dfrac{9\left(x+5\right)}{12\left(x+5\right)\left(x-5\right)}-\dfrac{90}{12\left(x+5\right)\left(x-5\right)}+\dfrac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}=0\\ \Rightarrow9x+45-90+14x-70=0\\ \Leftrightarrow23x=115\\ \Leftrightarrow x=5\left(KTM\right)\)
Vậy phương trình vô nghiệm
\(\text{c) }\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\\ \Leftrightarrow\left(\dfrac{x+29}{31}+1\right)-\left(\dfrac{x+27}{33}+1\right)=\left(\dfrac{x+17}{43}+1\right)-\left(\dfrac{x+15}{45}+1\right)\\ \Leftrightarrow\dfrac{x+60}{31}-\dfrac{x+60}{33}-\dfrac{x+60}{43}+\dfrac{x+60}{45}=0\\ \Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\\ \Leftrightarrow x+60=0\left(\text{Vì }\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\right)\\ \Leftrightarrow x=-60\)
Vậy \(x=-60\) là nghiệm của phương trình
\(\dfrac{2x+3}{2x-3}-\dfrac{3}{4x-6}=\dfrac{2}{5}\)
\(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{X+17}{43}-\dfrac{x+15}{45}\)
a: \(\Leftrightarrow\dfrac{2\left(2x+3\right)}{4x-6}-\dfrac{3}{4x-6}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5\left(4x+6-3\right)}{5\left(4x-6\right)}=\dfrac{2\left(4x-6\right)}{5\left(4x-6\right)}\)
=>5(4x+3)=2(4x-6)
=>20x+15=8x-12
=>12x=-27
hay x=-9/4
b: \(\Leftrightarrow\dfrac{x+29}{31}+1-\dfrac{x+27}{33}-1=\dfrac{x+17}{43}+1-\dfrac{x+15}{45}-1\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\)
=>x+60=0
hay x=-60
Tìm x:
a)\(\dfrac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\dfrac{x-1}{25}}=\dfrac{29}{15}\)
b)\(\dfrac{3x-2}{\sqrt{x-1}}-\sqrt{x+1}=\sqrt{2x-3}\)
Giải phương trình: \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
Giải phương trình
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+\dfrac{13}{13}+\dfrac{2x+45}{15}-\dfrac{15}{15}=\dfrac{3x+8}{37}+\dfrac{37}{37}+\dfrac{4x+69}{9}-\dfrac{9}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)=\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)-\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=0\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\end{matrix}\right.\)
Do đó: \(x=-15\)
Vậy \(S=\left\{-15\right\}\)
a \(\dfrac{-4}{7}\) - \(\dfrac{5}{13}\) x \(\dfrac{-39}{25}\) + \(\dfrac{-1}{42}\) : \(\dfrac{-5}{6}\)
b \(\dfrac{2}{9}\) x [\(\dfrac{4}{45}\): ( \(\dfrac{1}{5}\) - \(\dfrac{2}{15}\)) + 1\(\dfrac{2}{3}\)] - \(\dfrac{-5}{27}\)
\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\)
\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\)
\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
\(\dfrac{16}{21}\) + \(\dfrac{6}{7}\) ; \(\dfrac{15}{22}\) x \(\dfrac{11}{35}\) ; \(\dfrac{8}{11}\) : \(\dfrac{5}{22}\) ; \(\dfrac{9}{13}\) : \(\dfrac{27}{39}\) .
`# \text {DNamNgV}`
`16/21 + 6/7`
`= 16/21 + 18/21`
`= 34/21`
__
`15/22 \times 11/35`
`= (15 \times 11)/(22 \times 35)`
`= (5 \times 3 \times 11)/(2 \times 11 \times 5 \times 7)`
`= (3 \times 1)/(2 \times 7)`
`= 3/14`
___
`8/11 \div 5/22`
`= 8/11 \times 22/5`
`= (8 \times 22)/(11 \times 5)`
`= (8 \times 11 \times 2)/(11 \times 5)`
`= (8 \times 2)/5`
`= 16/5`
___
`9/13 \div 27/39`
`= 9/13 \times 39/27`
`= 9/13 \times 13/9`
`= 1`
(x-1)/13 - (2x-13)/15 = (3x-15)/27 - (4x-27)/29
Giải giúp tớ nhé. Cam ơn