ruts gonj phân thức 12x^2+28x+8/9x^2-1
ruts gonj q(x)=-x^2+2-3x^2+5x
\(Q\left(x\right)=-x^2+2-3x^2+5x\)
\(=\left(-x^2-3x^2\right)+5x+2\)
\(=-4x^2+5x+2\)
#DatNe
phân tích đa thức thành nhân tử
a)x4 – 9x3 + 28x2 – 36x + 16
b)(12x – 1)(6x – 1)(4x – 1)(3x – 1) – 5
x4 - 9x3 + 28x2 - 36x + 16
Thử với x = 4 ta có :
44 - 9.43 + 28.42 - 36.4 + 16 = 0
Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4
Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4
Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )
Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4
Ta có : 23 - 5.22 + 8.2 - 4 = 0
Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2
Thực hiện phép chia x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2
Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )
x2 - 3x + 2 = x2 - x - 2x + 2
= x( x - 1 ) - 2( x - 1 )
= ( x - 2 )( x - 1 )
Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )
a. \(x^4-9x^3+28x^2-36x+16\)
\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)
\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)
\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
Cho \(\frac{xy}{x^2+y^2}=\frac{5}{8}\)
Ruts gonj \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}\)
\(\frac{xy}{x^2+y^2}=\frac{5}{8}\)
\(\Rightarrow5\left(x^2+y^2\right)=8xy\)
Ta có : \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{5\left(x^2+y^2-2xy\right)}{5\left(x^2+y^2+2xy\right)}\)
\(=\frac{5\left(x^2+y^2\right)-10xy}{5\left(x^2+y^2\right)+10xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2xy}{18xy}=\frac{-1}{9}\)
Ta có: \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{x^2+y^2-2xy}{x^2+y^2}}{\frac{x^2+y^2+2xy}{x^2+y^2}}=\frac{\frac{x^2+y^2}{x^2+y^2}-\frac{2xy}{x^2+y^2}}{\frac{x^2+y^2}{x^2+y^2}+\frac{2xy}{x^2+y^2}}\)
\(=\frac{1-\frac{2xy}{x^2+y^2}}{1+\frac{2xy}{x^2+y^2}}=\frac{1-\frac{2.5}{8}}{1+\frac{2.5}{8}}=\frac{-1}{9}\)
Vậy \(P=\frac{-1}{9}\)
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
bài 1 phân tích đa thức sau thành nhân tử
a, 12x^3 - 6x^2 + 3x
b, 2/5x^2 + 5X^3 + x^2y
c, 14x^2y - 21xy^2 + 28x^2y^2
a: \(12x^3-6x^2+3x\)
\(=3x\cdot4x^2-3x\cdot2x+3x\cdot1\)
\(=3x\left(4x^2-2x+1\right)\)
b: \(\dfrac{2}{5}x^2+5x^3+x^2y\)
\(=x^2\cdot\dfrac{2}{5}+x^2\cdot5x+x^2\cdot y\)
\(=x^2\left(\dfrac{2}{5}+5x+y\right)\)
c: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
Phân tích thành nhân tử
`2x-1^3 +8`
`8x^3 -12x^2 +6x-1`
`8x^3 -12x^2 +6x-2`
`9x^3 -12x^2 +6x-1`
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
8x³ - 12x² + 6x - 1
= (2x)³ - 3.(2x)².1 + 3.2x.1 - 1³
= (2x - 1)³
--------------------
8x³ - 12x² + 6x - 2
= 8x³ - 12x² + 6x - 1 - 1
= (2x)³ - 3.(2x)².1 + 3.(2x).1 - 1³ - 1³
= (2x - 1)³ - 1³
= (2x - 1 - 1)[(2x - 1)² + (2x - 1).1 + 1]
= (2x - 2)(4x² - 4x + 1 + 2x - 1 + 1)
= 2(x - 1)(4x² - 2x + 1)
--------------------
9x³ - 12x² + 6x - 1
= x³ + 8x³ - 12x² + 6x - 1
= x³ + (2x)³ - 3.(2x)² + 3.2x.1² - 1³
= x³ + (2x - 1)³
= (x + 2x - 1)[x² - x.(2x - 1) + (2x - 1)²]
= (3x - 1)(x² - 2x² + x + 4x² - 4x + 1)
= (3x - 1)(3x² - 3x + 1)
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 xmũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
d, 9x mũ 3 - 12x mũ 2 + 6x - 1
e, x mũ 3 - 6x mũ 2 y + 12xy mũ 2 - 8y mũ 3
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 x mũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
a.\(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b.\(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c.\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
Bài 8. Tìm giá trị nhỏ nhất của biểu thức: A = \(\sqrt{1-6x+9x^2}\)+ \(\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
x6-2x5+9x4-12x3+28x2-8x+20=0