cmr: y=(m+5)x+2m-10 luôn đi qua 1 điểm cố định với mọi m
1) cho hàm số y = (m+5) x + 2m -10. Chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m
Gọi điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
Khi đó với mọi m ta có:
\(y_0=\left(m+5\right)x_0+2m-10\)
\(\Leftrightarrow m\left(x_0+2\right)+5x_0-y_0-10=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+2=0\\5x_0-y_0-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2\\y_0=-20\end{matrix}\right.\)
\(\Rightarrow\) Với mọi m đồ thị hàm số luôn đi qua điểm cố định có tọa độ \(\left(-2;-20\right)\)
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
CMR: đường thẳng sau luôn đi qua 1 điểm cố định với mọi m: (d) y = mx + 2m - 6
Tìm điểm cố định mà đường thẳng y = (2m + 3)x - m + 1 luôn đi qua với mọi m
Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:
\(y_0=\left(2m+3\right)x_0-m+1\)
\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)
Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)
Cho đường thẳng (d): y= (m+1)x +2m -3. Chứng minh rằng với mọi m đường thẳng (d) luôn luôn đi qua một điểm cố định. Xác định điểm cố định đó.
Chứng minh rằng đường thẳng (d): y = (3m+1) x -2m +5 luôn luôn đi qua một điểm cố định với mọi giá trị của tham số m.
y=(3m+1)x-2m+5
=3mx+x-2m+5
=m(3x-2)+x+5
Điểm mà (d) luôn đi qua có tọa độ là:
3x-2=0 và y=x+5
=>x=2/3 và y=5+2/3=17/3
1.Cho hàm số y=(m+5)x+2m-10 a.Cm đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m b.Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất.
chứng tỏ rằng đường thẳng d(y) = ( 1+m)x -2m+4 luôn đi qua 1 điểm cố định với mọi m
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà \(\left(d\right)\) luôn đi qua
\(\Leftrightarrow y_0=\left(1+m\right)x_0-2m+4=x_0+mx_0-2m+4\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=2\\2-y_0+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=6\end{matrix}\right.\)
Vậy \(\left(d\right)\) luôn đi qua \(A\left(2;6\right)\) cố định với mọi m
1) cho hàm số y = (m+5) x + 2m -10... a) tìm m để hàm số trên là hàm số bậc nhất... b) chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
1) cho hàm số y = (m+5) x + 2m -10... a) tìm m để hàm số trên là hàm số bậc nhất... b) chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)