a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
a: Để hàm số là hàm số bậc nhất thì \(m+5\ne0\)
hay \(m\ne-5\)
cho hàm số y = (2m-1)x+2, tìm m để
a)hàm sỗ đã cho là hàm số bậc nhất
b)hàm sỗ đã cho là hàm số đồng biến
c)đồ thị hàm số đi qua 2 điểm A(2;4)
d)đồ thị hàm số song song với đường thẳng y=3x
a) vẽ đồ thị hàm số sau trên cùng mặt phẳng toạ độ Oxy
(d): y = x - 2
(d’): y = - 2x + 1
b) tìm toạ độ giao điểm E của 2 đường thẳng (d) và (d')
c) hãy tìm m để đồ thị hàm số y= (m-2)x+m và 2 đường thẳng (d),(d') đồng qui
Cho hình vuông ABCD. Gọi I là điểm nằm giữa A và B. Gọi M và N là các điểm đối xứng vối I qua AC và BD. Qua I kẻ đường thẳng vuông góc với MN tại H. Chứng minh rằng khi I thay đổi trên AB thì đường thẳng IH luôn đi qua một điểm cố định
Cho hai hàm số: y=2x+3 và y=\(\dfrac{-1}{2}\)x-2
a) vẽ đồ thị hàm số trên cùng một mặt phẳng tọa độ.
b)Tìm tọa độ giao điểm C của hai đồ thị trên.
c)Tính diện tích tam giác ABC biết A, B lần lượt là giao điểm của hai đường thẳng trên với trục tung.
Cho tam giác ABC vuông cân tại A, đường cao AH. Trên cạnh BC lấy điểm M tùy ý. Chính minh rằng tỉ số \(\dfrac{MA^2}{MB^2+MC^2}\) không phụ thuộc vào vị trí của điểm M. Giá trị của tỉ số đó là bao nhiêu?
1) Cho tam giác ABC nhọn có BC=a, CA=b, AB=c, M là một điểm nằm trong tam giác. Đặt MA=x, MB=y, MC=z. Xác định vị trí của điểm M để a/x+b/y+c/z đạt giá trị nhỏ nhất.
Câu 1: Cho tam giác ABC vuông tại A, gọi O là trung điểm AB. Đường thẳng qua O vuông góc CO cắt đường thẳng qua B vuông góc với AB tại D.
a) Chứng minh rằng AB^2=4AC.BD.
b) M là một điểm bất kì trên CD, gọi E,F lầm lượt là hình chiếu của M trên OC, OD. Chứng minh rằng: MC.MD=EO+FO.FD.
Câu 2: Cho tam giác ABC vuông cân tại A và điểm M thuộc cạnh BC. Kẻ ME,MF lần lượt vuông góc với AB,AC tại E và F. Chứng minh rằng:
a) BM^2= 2ME^2, CM^2 =2MF^2
b) BM^2+CM^2= 2AM^2
Giups mình với huhu, mình đang cần gấp lắm!! PLEASE
1) Cho tam giác ABC nhọn có BC=a, CA=b, AB=c, M là một điểm nằm trong tam giác. Đặt MA=x, MB=y, MC=z. Xác định vị trí của điểm M để ax+by+cz đạt giá trị nhỏ nhất.