biết \(a+b+c=0\) và \(a^2+b^2+c^2=1\), tính \(a^4+b^4+c^4\)
tính giá trị của BT \(a^4+b^{4^{ }}+c^4+\dfrac{1}{4}\) biết a+b+c = 0 và \(a^2+b^2+c^2=1\)
Ta có: a+b+c=0
nên \(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow2ab+2ac+2bc=-1\)
\(\Leftrightarrow ab+ac+bc=\dfrac{-1}{2}\)
\(\Leftrightarrow\left(ab+ac+bc\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
Vậy: \(a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{3}{4}\)
1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
lại nhầm lần này đúng
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
trieu dang làm sai đoạn cuối rồi
tính giá trị biểu thức a) a^4+b^4+c^4 biết a+b+c=0 và a^2+b^2+c^2 =2
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
Tính giá trị biểu thức a^4+b^4+c^4 biết a+b+c = 0 và a^2+b^2+c^2=2
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)
Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)
Tính a^4+ b^4+ c^4 biết rằng a+b+c=0 và
a) a^2+ b^2+ c^2= 2
b) a^2+ b^2+ c^2= 1
( Ai trả lời thì nhớ ghi cả lời giải nhé. thanks mn nhìu)
có a+b+c = 0
=> a^2+b^2+c^2+2(ab+bc+ac) = 0
mà a^2+b^2+c^2 = 2
=> ab+bc+ac = -1
=> a^2b^2+b^2c^2+a^2c^2 + 2ab^2c+2a^2bc+2abc^2 = 1
=>a^2b^2+b^2c^2+a^2c^2 + 2abc(b+a+c) = 1
=>a^2b^2+b^2c^2+a^2c^2 = 1
Ta bình phong cái a^2+b^2+c^2 lên
đk là
a^4+b^4+c^4 + 2a^2b^2+2a^2c^2+2b^2c^2=4
=> a^4+b^4+c^4 + 2(a^2b^2+a^2c^2+b^2c^2) = 4
mà ở trên là a^2b^2+b^2c^2+a^2c^2 = 1
=> a^4+b^4+c^4 +1 =4
a^4+b^4+c^4 = 3
a) và b) là hai phần khác nhau nhé, ko phải là chung 1 phần đâu nha các bạn
Cho a+b+c = 0.Tính a^4 + b^4 + c^4. Biết:
a) a^2 + b^2 + c^2 = 2
b) a^2 + b^2 + c^2 = 1
a) Bình phương 2 vế của a+b+c=0 ta dược:
\(\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
Mà \(a^2+b^2+c^2=2\)
\(\Rightarrow2\left(ab+bc+ac\right)=0-2=-2\Rightarrow ab+bc+ac=-\frac{2}{2}=-1\)
\(\Rightarrow\left(ab+bc+ac\right)^2=\left(-1\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)
Mà a+b+c=0
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1\)
Mặt khác,bình phương 2 vế của a2+b2+c2=2,ta được:
\(\left(a^2+b^2+c^2\right)^2=2^2\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=4\)
\(\Rightarrow a^4+b^4+c^4+2.1=4\Rightarrow a^4+b^4+c^4=4-2=2\)
b)tương tự,\(a^4+b^4+c^4=\frac{1}{2}\) nhé!
uk bai nay cung ko kho lam
[ a+ b + c] ^2 = a^2 + b^2 + c ^2 6 + 2[ ab + bc +ca] = 1 + 2 [ab +bc + ca] = 0
ab + bc + ca = - 1/2
[ a^ 2 + b ^ 2+ c^2]^2= a^ 4 + b^ 4 +c^4+2[ a^2 b^2+ b^2c^2 c^2a^2] = 1[ 1]
[ab + bc + ca] ^ 2 = a^2b^2 b^2c^2 c^2a^2 b^2 ac +c ^2ab + + a^bc = [a^2b^2+ b^2c^2 +c^2a^2] = 1/2
tu [1 ] va [2] a^4 +b^4 + c^4 + 2[a^2b^2 + b^2c^2 + c^2+a^2] = a^4 + b^4 + c^4 + 1/2=1 hay a ^4 + b^ 4 + c^4 = 1/2
neu dung thi k mk nha.
Tính giá trị của biểu thức a4 + b4 + c4 biết a+b+c=0 và :
a) a^2 + b^2 +c^2 =2
b) a^2 + b^2 +c^2 =1
Bạn vào mục câu hỏi tương tự có rất nhiều.
Cho đa thức A(\(x\))=a\(x\)\(^2\)+b\(x\)+c (a,b,c là các hệ số ;\(x\) là biến)
a)Hãy tính A(-1),biết a+c=b-8
b)Tính a,b,c,biết A(0)=4;A(1)=9 và A(2)=14
c)Biết 5a+b+2c=0.CM A(2)xA(-1)\(\le\)0
giúp mình với khó quá!!!
a) Ta có: \(A\left(x\right)=ax^2+bx+c\)
Thay \(A\left(-1\right)\) ta được:
\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)
\(=b-8-b=-8\)
b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)
c)
Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)
\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)
\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)