Tìm x,y
x2+y2 - 4x +6y +13=0
phân tích đa thức sau thành nhân tử
x2 - 4x + 4 - y2
x2 + 2xy + y2 - x- y
x2 - 2xy + y2 - 9
2x3y + 2xy3 + 4x2y2 - 2xy
x2+y2-2xy + 4x - 4y
x3 - x + 3x2y + 3xy2 + y3 -y
x2 - 2xy +y2 - 4z2
x2 - x - y2 - y
x2 - 2xy + y2 - z2
`x^2 -4x+4-y^2`
`=(x^2 -4x+4)-y^2`
`=(x-2)^2 -y^2`
`=(x-2-y)(x-2+y)`
`x^2+2xy+y^2-x-y`
`=(x^2+2xy+y^2) -(x+y)`
`=(x+y)^2 -(x+y)`
`=(x+y)(x+y-1)`
`x^2-2xy+y^2-9`
`=(x^2-2xy+y^2)-3^2`
`=(x-y)^2-3^3`
`=(x-y-3)(x-y+3)`
Tách ra đi cậu.
\(x^2\)+\(y^2\)-4x+6y+13=0
Tìm x
x2+y2-4x+6y+13=0
(x2-4x+4)+(y2+6y+9)=0
(x-2)2+(y+3)2=0
suy ra x-2=0 hoặc y+3=0
*x-2=0=>x=2 *y+3 =0=> y=-3
vậy x=2,y=-3
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ 1 , giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x 2 + y 2 + 4 x + 6 y + 13 - m = 0 thuộc tập nào sau đây?
A. [8;10]
B. [5;7]
C. [1;4]
D. [-3;0]
Đáp án A
Ta có, giả thiết log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính R 1 = 2
Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m là đường tròn tâm I(-2;-3); R 2 = m
Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9
Tính giá trị:
C = x2 + y2 + 4x - 6y + 1 với x = 28, y = 13
\(C=x^2+y^2+4x-6y+1\)
\(=x^2+4x+4+y^2-6y+9-12\)
\(=\left(x+2\right)^2+\left(y-3\right)^2+1\)
\(=30^2+10^2+1\)
=1001
Tìm cặp số (x;y) thỏa:
a) x2 + 3y2 - 4x + 6y + 7 = 0.
b) 3x2 y2 + 10x - 2xy + 26 = 0.
c) 3x2 + 6y2 - 12x - 20y + 40 = 0.
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 ( 2 x + 2 y + 5 ) ≥ 1 giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x2 + y2 + 4x + 6y + 13 - m = 0 thuộc tập nào sau đây?
![]()
![]()
![]()
![]()
Đáp án A
Ta có, giả thiết

là miền trong đường tròn tâm I(1;1) bán kính R1 = 2
Và

Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y - 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 - 4x + 6y – 3 = 0
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính 
b) 16x2 + 16y2 + 16x – 8y –11 = 0

⇒ Đường tròn có tâm
, bán kính 
c) x2 + y2 - 4x + 6y - 3 = 0
⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính 
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 - 2x - 2y - 2 = 0
⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x - 8y - 11 = 0

Vậy đường tròn có tâm
và bán kính R = 1.
c) x2 + y2 - 4x + 6y -3 = 0
⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x - 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
Cho đường tròn (C): x 2 + y 2 + 4 x + 6 y - 12 = 0 và đường thẳng ∆: x – y + 6 = 0. Khẳng định nào sau đây là đúng?
A. Đường thẳng không cắt đường tròn
B. Đường thẳng tiếp xúc với đường tròn
C. Đường thẳng cắt đường tròn tại hai điểm cách nhau một khoảng dài hơn 3
D. Đường thẳng cắt đường tròn tại 2 điểm cách nhau một khoảng ngắn hơn 2
Bài 3: Tìm x; y thỏa mãn phương trình sau:
x2 - 4x + y2 - 6y + 15 = 2
\(x^2-4x+y^2-6y+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy (x;y) = (2;3)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)