Trong mặt phẳng Oxy, cho đường tròn (C):(x+3)^2 +(y-4)^2=16 và điểm H (-2;2) . Đường thẳng delta:ax+by+1 đi qua điểm H và cắt đường tròn (c) tại hai điểm A,B sao cho độ dài đoạn thẳng AB nhỏ nhất. Khi đó 6a+3b bằng
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
1. Trong mặt phẳng toạ độ oxy, cho 2 đường thẳng delta :x+2y+4=0 và d: 2x-y+3=0. Đường tròn tâm I thuộc d cắt Ox tại A và B, cắt trục Oy tại C và D sao cho AB=CD=2. Tính khoảng cách từ điểm I đến đường thăng delta
2. trong mặt phẳng toạ độ oxy, cho tứ giác ABCD với AB:3x-4y+4=0, BC: 5+12y-52=0, CD: 5x-12y-4=0, AD:3x+4y-12=0. tìm điểm I nằm trong tứ giác ABCD sao cho d(I, AB)=d(I,BC)=d(I,CD)=d(I,DA)
Trong mặt phẳng Oxy cho đường tròn (C): x^2+y^2=4 và đường thẳng d: x- y +2=0. Gọi M là điểm thuộc đường tròn (C) sao cho khoảng cách đến d là lớn nhất. Phép vị tự tâm O tỉ số k = ✓2 biến điểm M thành điểm M' có tọa độ là?
Trong mặt phẳng Oxy,cho đường tròn (C) có phương trình (x-3)2+(y+1)2=10.Viết phương trình tiếp tuyến cua đường tròn đã cho tại điểm M∈(C),biết hoành độ của điểm M là X0=2
+
Gọi \(M\left(2;y_M\right)\) là tiếp điểm của (C):
\(\Leftrightarrow2^2+y_M^2-12+2y_M=0\)
\(\Leftrightarrow y_M^2+2y_M-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y_M=2\\y_M=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\left(2;2\right)\\M\left(2;-4\right)\end{matrix}\right.\)
* Với M(2;2)
Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;3\right)\Rightarrow\overrightarrow{n}=\left(3;1\right)\)
\(\Rightarrow\left(D\right):3x+y-8=0\)
* Với M(2; -4)
Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;-3\right)\Rightarrow\overrightarrow{n}=\left(-3;1\right)\)
\(\Rightarrow\left(D\right):-3x+y+4=0\)
Trong mặt phẳng Oxy, cho điểm A(1;2), B(2;4), C(−1;3) và đường thẳng (d) : x + y - 5 = 0 và đường tròn (C) : ((x - 2) ^ 2) + (y + 1) ^ 2 = 4 . a. Tìm ảnh của vec A qua phép tịnh tiến theo vec v = (3; 1) . b. Tìm đường thẳng (d') là ảnh của đường thẳng (d) qua phép tịnh tiến theo a = 3i - 2j C. Tìm đường tròn (C') là ảnh của đường tròn (C) qua phép tịnh tiến theo AB . d. Tìm vec u, biết T vec u (B) = C
a: Ảnh của A là:
x=1+3=4 và y=2+1=3
b: (d') là ảnh của (d) qua phép tịnh tiến vecto a=(3;-2)
=>(d'): x+y+c=0
Lấy B(1;4) thuộc (d)
=>B'(4;2)
Thay x=4 và y=2 vào (d'), ta được:
c+4+2=0
=>c=-6
d: Theo đề,ta có:
2+x=-1 và 4+y=3
=>x=-3 và y=-1
=>vecto u=(-3;-1)
4. Trong mặt phẳng Oxy, cho đường thẳng d: x − 3y + 1 = 0 và điểm I(−3; 1).
(a) Tìm ảnh của điểm M(1; −2) qua phép đối xứng tâm I.
(b) Tìm ảnh của đường thẳng ∆: 2x + y − 1 = 0 qua phép đối xứng tâm I.
(c) Tìm ảnh của đường tròn (C): (x − 2)2 + (y + 3)2 = 9 qua phép đối xứng
Câu 81: Trong mặt phẳng (Oxy), cho 2 đường tròn (C1): x^2 + y^2=8 và (C2): (x-2)^2 + y^2=4 cắt nhau tại 2 điểm phân biệt A và B. Phương trình đường thẳng AB là Giúp em với:((((
Phương trình giao điểm hai đường tròn:
\(\left\{{}\begin{matrix}x^2+y^2=8\\\left(x-2\right)^2+y^2=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=8\\x^2+y^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=8\\4x=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{8-x^2}\\x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\left(2;2\right)\\B\left(2;-2\right)\end{matrix}\right.\)
Tới đây dễ dàng viết được pt AB có dạng: \(x-2=0\)
Trong mặt phẳng Oxy, cho đường tròn (C): \(\left(x-1\right)^2+y^2=2\) và đường thẳng \(\Delta:x-y+4=0\) gọi \(M\left(x_0;y_0\right)\) \(\in\) (C) là điểm có khoảng cách từ m tới (\(\Delta\)) lớn nhất. Tính \(x_0+y_0\)
Trong mặt phẳng Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo véc tơ v ⇀ = ( 3 ; 2 ) biến đường tròn (C) thành đường tròn có phương trình nào sau đây?
A. x - 1 2 + y + 3 2 = 4
B. x + 2 2 + y + 5 2 = 4
C. x - 2 2 + y - 5 2 = 4
D. x + 4 2 + y - 1 2 = 4
Trong mặt phẳng hệ tọa độ oxy, cho đường tròn (C):(x-2)2+(y-3)2=100 và đường thẳng denta:3x-4y+1=0.Gọi A,B là hai giao điểm của denta và(C).Tính độ dài đoạn thẳng AB
Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)
Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\)
\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)
Áp dụng định lý Pitago:
\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)
\(\Rightarrow AB=2IA=6\sqrt{11}\)