Cho đường tròn tâm O , dây AB = 12 cm. Đường kính MN vuông góc AB tại H. ( \(MH\ge HN\))
a) Chứng minh \(MN\ge6\)
b) MB = 10 tính đường kính đường tròn
Bài 2 : cho đường tròn tâm O , dây AB=12cm. kẻ đường kính MN vuông góc với AB tại H(MH>HN). Hạ OKvuông góc MB(K thuộc MB). biết MB=10cm, tính đường kính của đường tròn và tính khoảng cách OK
Vì \(AB\perp MN\) tại H nên H là trung điểm AB (dây vuông góc đường kính)
\(\Rightarrow AH=\dfrac{1}{2}AB=6\left(cm\right)\)
MH vừa là đường cao vừa là trung tuyến nên \(\Delta MAB\) cân tại M
Do đó \(MA=MB=10\left(cm\right)\)
Ta có \(\widehat{MAN}=90^0\)(góc nt chắn nửa đường tròn) nên tam giác MAN vuông tại A
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\\ \Rightarrow\dfrac{1}{36}=\dfrac{1}{AN^2}+\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{AN^2}=\dfrac{1}{36}-\dfrac{1}{100}=\dfrac{4}{225}\\ \Rightarrow4AN^2=225\Rightarrow AN^2=\dfrac{225}{4}\Rightarrow AN=\dfrac{15}{2} =7,5\left(cm\right)\)
\(MN=\sqrt{AN^2+AM^2}=\sqrt{10^2+7,5^2}=12,5\left(cm\right)\)
Vậy đường kính đường tròn \(\left(O\right)\) dài 12,5 cm
NH vừa là đường cao vừa là trung tuyến nên \(\Delta NAB\) cân tại N
OK vuông góc với MB nên K cũng là trung điểm MB
\(\Rightarrow AN=NB=7,5\left(cm\right)\)
\(\left\{{}\begin{matrix}NO=OM\left(=R\right)\\MK=KB\left(cm.trên\right)\end{matrix}\right.\Rightarrow OK\) là đtb tam giác MBN
\(\Rightarrow OK=\dfrac{1}{2}NB=\dfrac{1}{2}\cdot7,5=3,75\left(cm\right)\)
cho đường tròn tâm o bán kính r , từ điểm a nằm ngoài đường tròn vẽ hai tiếp tuyến am , an với đường tròn . i là giao điểm mn và oa . vẽ đường kính mb của đường tròn , qua o kẻ dường thẳng vuông góc với ab tại h , cắt mn tại c , chứng minh bc là tiếp tuyến của đường tròn tâm o , bán kính r
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại I
Xét ΔOHA vuông tại H và ΔOIC vuông tại I có
\(\widehat{HOA}\) chung
Do đó: ΔOHA~ΔOIC
=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)
=>\(OH\cdot OC=OA\cdot OI\)
mà \(OA\cdot OI=OM^2=OB^2\)
nên \(OB^2=OH\cdot OC\)
=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
Xét ΔOBC và ΔOHB có
\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
\(\widehat{BOC}\) chung
Do đó: ΔOBC~ΔOHB
=>\(\widehat{OBC}=\widehat{OHB}\)
mà \(\widehat{OHB}=90^0\)
nên \(\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
Cho đường tròn tâm O bán kính R, dây AB không qua tâm O, I là trung điểm của AB. AB dài 16cm, bán kính R= 10 cm
a) Tính OI
b) OI cắt đường tròn O tại M . Tính AM
c) Kẻ đường kính MN của đường tròn tâm O, kẻ OK vuông góc với AN tại K. Tính AK
a: ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI vuông góc AB
I là trung điểm của AB
=>IA=IB=16/2=8cm
ΔOIA vuông tại I
=>OA^2=OI^2+IA^2
=>OI^2=10^2-8^2=36
=>OI=6(cm)
b: OM=OI+IM
=>6+IM=10
=>IM=4cm
ΔMIA vuông tại I
=>MI^2+IA^2=MA^2
=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)
Cho đường trong tâm O bán kính R đường kính AB. Lấy điểm H thuộc OB, dây MN vuông góc với AB tại điểm H. Hạ HE vuông góc với MA, HF vuông góc với MB. Tiếp tuyến của đường tròn tại M cắt AB tại K , đường thẳng EF vắt AB tại I.
A/ Chứng minh : I là trung điểm của HK
B/ Lấy điểm Q đối xứng với M qua A. Chứng minh : Khi điểm H chuyển động trên đoạn OB thì Q thuộc 1 đường tròn cố định.
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.1: ΔOMN cân tại O
mà OA vuông góc MN
nên OA là trung trực của MN
=>AM=AN
góc AMB=góc ANB=1/2*sđ cung AB=90 độ
Xét ΔAMB vuông tại M và ΔANB vuông tại N có
AB chung
AM=AN
=>ΔAMB=ΔANB
=>BM=BN
=>AM,AN là tiếp tuyến của (B;BM)
2: MH^2=AH*HB
=>4*MH^2=4*AH*HB
=>MN^2=4*AH*HB
3: góc MBA=90-60=30 độ
=>góc MBN=60 độ
=>ΔMBN đều
Cho đường tròn tâm ( O; R ) đường kính AB và điểm M trên đường tròn sao cho góc MAB = 60 độ. Kẻ dây MN vuông góc với AB tại H.
a) CM: AM, AN là các tiếp tuyến của đường tròn ( B; BM )
b) CM: $MN^{2}$ = 4AH.HB
c) CM: tam giác BMN là tam giác đều và điểm O là trọng tâm của nó
d) Tia MO cắt đường tròn ( O ) tại E, tia MB cắt ( B ) tại F. CM: 3 điểm N, E, F thẳng hàng
Cho đường tròn tâm ( O; R ) đường kính AB và điểm M trên đường tròn sao cho góc MAB = 60 độ. Kẻ dây MN vuông góc với AB tại H.
a) CM: AM, AN là các tiếp tuyến của đường tròn ( B; BM )
b) CM: MN2= 4AH.HB
c) CM: tam giác BMN là tam giác đều và điểm O là trọng tâm của nó
d) Tia MO cắt đường tròn ( O ) tại E, tia MB cắt ( B ) tại F. CM: 3 điểm N, E, F thẳng hàng
cho đường tròn tâm O bán kính R , AB là dây khác đường kính . qua O kẻ đường vuông góc với AB tại H , cắt tiếp tuyến tại A cảu đường tròn tại M. vẽ tiếp tuyến tại C cắt MB tại D . chứng minh AC.CD =R^2