Tim x
x(x-2012)-2013x+2012.2013=0
Tìm x, biết
a) x(x - 2012) - 2013x + 2012.2013 = 0
b) (x - 1)3 + 1 + 3x(x - 4) = 0
nốt ý b:
\(\left(x-1\right)^3+1+3x\left(x-4\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+1+3x^2-12x=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ..............
\(a,x\left(x-2012\right)-2013x+2012.2013=0\)
\(=x\left(x-2012\right)+2013\left(-x+2012\right)=0\)
\(\Rightarrow x\left(x-2012\right)-2013\left(x-2012\right)=0\)
\(\Rightarrow\left(x-2013\right)\left(x-2012\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2013=0\\x-2012=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2013\\x=2012\end{matrix}\right.\)
Vậy...
Bài 1:
a) 1042 - 16
b) 98.28 - (184 - 1)(184 + 1)
c) 9993 +3.9992 + 3.999 + 1
d) 423 - 6.422 + 12.42 - 8
Bài 2:
a) x(x - 2012) - 2013x +2012.2013 = 0
b) (x - 1)3 + 1 + 3x(x - 4) = 0
c) (x + 4)2 - 16 = 0
\(Bài.1:\\ a,104^2-16=104^2-4^2=\left(104+4\right)\left(104-4\right)=108.100=10800\\ b,9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\\ =\left(9.2\right)^8-\left(18^8-1\right)=18^8-18^8+1=1\\ c,999^3+3.999^2+3.999+1\\ =999^3+3.999^2.1+3.999.1^2+1^3=\left(999+1\right)^3=1000^3=1000000000\\ d,42^3-6.42^2+12.42-8\\ =42^3-3.42^2.2+3.42.2^2-2^3\\ =\left(42-2\right)^3=40^3=64000\)
Bài 1
a) 104² - 16
= 104² - 4²
= (104 - 4)(104 + 4)
= 100.108
= 10800
b) 9⁸.2⁸ - (18⁴ - 1)(18⁴ + 1)
= 18⁸ - (18⁸ - 1)
= 18⁸ - 18⁸ + 1
= 1
c) 999³ + 3.999² + 3.999 + 1
= (999 + 1)³
= 1000³
= 1000000000
d) 42³ - 6.42² + 12.42 - 8
= (42 - 2)³
= 40³
= 64000
Bài 2
a) x(x - 2012) - 2013x + 2012.2013 = 0
⇔ x(x - 2012) - 2013(x - 2012) = 0
⇔ (x - 2012)(x - 2013) = 0
⇔ x - 2012 = 0 hoặc x - 2013 = 0
*) x - 2012 = 0
⇔ x = 2012
*) x - 2013 = 0
⇔ x = 2013
Vậy x = 2012; x = 2013
b) (x - 1)³ + 1 + 3x(x - 4) = 0
⇔ x³ - 3x² + 3x - 1 + 1 + 3x² - 12x = 0
⇔ x³ - 9x = 0
⇔ x(x² - 9) = 0
⇔ x(x - 3)(x + 3) = 0
⇔ x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
*) x - 3 = 0
⇔ x = 3
*) x + 3 = 0
⇔ x = -3
Vậy x = -3; x = 0; x = 3
c) (x + 4)² - 16 = 0
⇔ (x + 4)² - 4² = 0
⇔ (x + 4 - 4)(x + 4 + 4) = 0x
⇔ (x + 8) = 0
⇔ x = 0 hoặc x + 8 = 0
*) x + 8 = 0
⇔ x = -8
Vậy x = -8; x = 0
Tính giá trị của đa thức:
F(x) = x^2013 - 2013x^2012 + 2013x^2011 - 2013x^2010 + ... + 2013x- 1 tại x = 2012
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1\). Tính \(f\left(2012\right)\)
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1.\)Tính \(f\left(2012\right)\)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
Bài 2: Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...+x^2+x+1\)
=x+1=2013
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)
Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)
Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)
\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)
\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)
Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).