tìm Min :
A = \(x = {3x^2 - 12x+10 \over x^2-4x+5}\)
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
Tìm x:
a.12x^2-4x(3x-5)=10x-17
b.1/5x.(10x-15)-2x(x-5)=12
c.3x(4/3x+1)-4x(x-2)=10
2.tính gtbt
A=5-4x(x-2)+4x^2 tại x=4
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
x/2 - ( 3x/5 - 13/5 ) = -( 7/5 + 7/10x )
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
Bài 2: Tìm x, biết:
a/ 12x(x – 5) – 3x(4x - 10) = 120
b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)
c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
1.Tìm x
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
b)3x.\(\left(\frac{4}{3}+1\right)\)-4x.(x-2)=10
c)12x^2-4x.(3x-5)=10x-17
d) 4x(x-5)-7x.(x-4)+3x^2=12
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
\(\Leftrightarrow-14x-x=-2-5\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=\frac{7}{15}\)
b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)
\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)
\(\Leftrightarrow-4x^2+15x-10=0\)
Đề sai???
\(c,12x^2-4x\left(3x-5\right)=10x-17\)
\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)
\(\Leftrightarrow10x=-17\)
\(\Leftrightarrow x=-\frac{17}{10}\)
\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{3}{2}\)
Tìm X a) 3x . ( 12x-4) - 9x . (4x-3)= 30 b) 6 . ( 2x+1) - 5 . ( X-2) = 10
a) \(3x\cdot\left(12x-4\right)-9x\cdot\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=\dfrac{30}{15}\)
\(\Leftrightarrow x=2\)
b) \(\left(2x+1\right)-5\left(x-2\right)=10\)
\(\Leftrightarrow2x+1-5x+10=10\)
\(\Leftrightarrow-3x+11=10\)
\(\Leftrightarrow-3x=10-11\)
\(\Leftrightarrow-3x=-1\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Tìm GTNN (Min) của \(A=\frac{3x^2+12x+17}{x^2+4x+5}\)
Biểu thức này chỉ tồn tại giá trị lớn nhất (max), không tồn tại giá trị nhỏ nhấ (min)
1.Tìm x
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
b)3x.\(\left(\frac{4}{3}+1\right)\)-4x.(x-2)=10
c)12x^2-4x.(3x-5)=10x-17
d) 4x(x-5)-7x.(x-4)+3x^2=12
\(a,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)
\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)
\(\Leftrightarrow-15x+7=0\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=-\frac{7}{-15}\)
\(\Leftrightarrow x=\frac{7}{15}\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTNN của \(A=\frac{3x^2-12x+10}{x^2-4x+5}\)
\(A=\frac{3\left(x^2-4x+5\right)-5}{x^2-4+5}=3-\frac{5}{\left(x-2\right)^2+1}\ge3-5=-2\)
Dau '=' xay ra khi \(x=2\)
Vay \(A_{min}=-2\)khi \(x=2\)