Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Gia Bảo
Xem chi tiết
Nguyễn Vũ Trường Sơn
Xem chi tiết
Đức Thuận Trần
22 tháng 10 2020 lúc 20:17

Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)

Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\)\(\frac{c^2-d^2}{cd}\) ta có :

\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)

=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))

vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)

lâu lắm không làm nên không chắc đâu :v

Khách vãng lai đã xóa
dream XD
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 16:50

undefined

Cao Thi Khanh Chi
Xem chi tiết
Phan Thanh Tịnh
18 tháng 9 2016 lúc 17:35

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)\(\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

Đặng Nguyễn Quỳnh Nga
Xem chi tiết
Lê Nguyên Hạo
21 tháng 7 2016 lúc 19:04

a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Trần Thu Uyên
21 tháng 7 2016 lúc 19:08

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng dãy tỉ số bằng nhau ta có;

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

=> đpcm

Chúc bạn làm bài tốt

Lê Nguyên Hạo
21 tháng 7 2016 lúc 19:11

b) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a}{c}=\frac{b}{d}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (đpcm)

Việt Anh
Xem chi tiết
Mai Ngọc
7 tháng 1 2016 lúc 20:48

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2-b^2}{ab}=\frac{\left(bk\right)^2-b^2}{bk.b}=\frac{b^2.k^2-b^2}{b^2k}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

\(\frac{c^2-d^2}{cd}=\frac{\left(dk\right)^2-d^2}{dk.d}=\frac{d^2k^2-d^2}{d^2k}=\frac{d^2\left(k^2-1\right)}{d^2.k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2)=>\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\).

 

Mai Ngọc
7 tháng 1 2016 lúc 20:49

phần b đề kiểu gì vậy??//

Nguyễn Lê Thụ
Xem chi tiết
Bí Mật
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Lê Hào 7A4
1 tháng 3 2022 lúc 22:20

giúp mình với

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

Đặt ab=cd=k

 

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

Gia Nhi Nguyễn Lê
1 tháng 3 2022 lúc 22:23

 

Đặt ab=cd=k

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :